| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 | 1 | chjoi | ⊢ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) )  =   ℋ | 
						
							| 3 | 2 | fveq2i | ⊢ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) ) )  =  ( 𝑆 ‘  ℋ ) | 
						
							| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 5 | 1 4 | pm3.2i | ⊢ ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 6 | 1 | chshii | ⊢ 𝐴  ∈   Sℋ | 
						
							| 7 |  | shococss | ⊢ ( 𝐴  ∈   Sℋ   →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ 𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) | 
						
							| 9 |  | stj | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ) | 
						
							| 10 | 5 8 9 | mp2ani | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐴 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 11 |  | sthil | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘  ℋ )  =  1 ) | 
						
							| 12 | 3 10 11 | 3eqtr3a | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) |