Step |
Hyp |
Ref |
Expression |
1 |
|
sto1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
1
|
chjoi |
⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ |
3 |
2
|
fveq2i |
⊢ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) |
4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
5 |
1 4
|
pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
6 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
7 |
|
shococss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
8 |
6 7
|
ax-mp |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
9 |
|
stj |
⊢ ( 𝑆 ∈ States → ( ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
10 |
5 8 9
|
mp2ani |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
11 |
|
sthil |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ℋ ) = 1 ) |
12 |
3 10 11
|
3eqtr3a |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) |