Metamath Proof Explorer


Theorem sto1i

Description: The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1 𝐴C
Assertion sto1i ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 )

Proof

Step Hyp Ref Expression
1 sto1.1 𝐴C
2 1 chjoi ( 𝐴 ( ⊥ ‘ 𝐴 ) ) = ℋ
3 2 fveq2i ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ )
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 1 4 pm3.2i ( 𝐴C ∧ ( ⊥ ‘ 𝐴 ) ∈ C )
6 1 chshii 𝐴S
7 shococss ( 𝐴S𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
8 6 7 ax-mp 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )
9 stj ( 𝑆 ∈ States → ( ( ( 𝐴C ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) )
10 5 8 9 mp2ani ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) )
11 sthil ( 𝑆 ∈ States → ( 𝑆 ‘ ℋ ) = 1 )
12 3 10 11 3eqtr3a ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 )