Metamath Proof Explorer


Theorem sto2i

Description: The state of the orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1 𝐴C
Assertion sto2i ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = ( 1 − ( 𝑆𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sto1.1 𝐴C
2 1 sto1i ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 )
3 stcl ( 𝑆 ∈ States → ( 𝐴C → ( 𝑆𝐴 ) ∈ ℝ ) )
4 1 3 mpi ( 𝑆 ∈ States → ( 𝑆𝐴 ) ∈ ℝ )
5 4 recnd ( 𝑆 ∈ States → ( 𝑆𝐴 ) ∈ ℂ )
6 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
7 stcl ( 𝑆 ∈ States → ( ( ⊥ ‘ 𝐴 ) ∈ C → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) )
8 6 7 mpi ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ )
9 8 recnd ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ )
10 ax-1cn 1 ∈ ℂ
11 subadd ( ( 1 ∈ ℂ ∧ ( 𝑆𝐴 ) ∈ ℂ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 1 − ( 𝑆𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) )
12 10 11 mp3an1 ( ( ( 𝑆𝐴 ) ∈ ℂ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 1 − ( 𝑆𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) )
13 5 9 12 syl2anc ( 𝑆 ∈ States → ( ( 1 − ( 𝑆𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) )
14 2 13 mpbird ( 𝑆 ∈ States → ( 1 − ( 𝑆𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )
15 14 eqcomd ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = ( 1 − ( 𝑆𝐴 ) ) )