| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 | 1 | sto1i | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) | 
						
							| 3 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 4 | 1 3 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 | 4 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 7 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) ) | 
						
							| 8 | 6 7 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 |  | subadd | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝑆 ‘ 𝐴 )  ∈  ℂ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℂ )  →  ( ( 1  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) ) | 
						
							| 12 | 10 11 | mp3an1 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℂ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℂ )  →  ( ( 1  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) ) | 
						
							| 13 | 5 9 12 | syl2anc | ⊢ ( 𝑆  ∈  States  →  ( ( 1  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) ) | 
						
							| 14 | 2 13 | mpbird | ⊢ ( 𝑆  ∈  States  →  ( 1  −  ( 𝑆 ‘ 𝐴 ) )  =  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  ( 1  −  ( 𝑆 ‘ 𝐴 ) ) ) |