| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 3 | 1 2 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) | 
						
							| 4 | 3 | anim1i | ⊢ ( ( 𝑆  ∈  States  ∧  1  ≤  ( 𝑆 ‘ 𝐴 ) )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝑆  ∈  States  →  ( 1  ≤  ( 𝑆 ‘ 𝐴 )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 6 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 7 | 1 6 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 9 |  | letri3 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  =  1  ↔  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  =  1  ↔  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 5 10 | sylibrd | ⊢ ( 𝑆  ∈  States  →  ( 1  ≤  ( 𝑆 ‘ 𝐴 )  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 12 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 13 |  | breq2 | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  1  →  ( 1  ≤  ( 𝑆 ‘ 𝐴 )  ↔  1  ≤  1 ) ) | 
						
							| 14 | 12 13 | mpbiri | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  1  →  1  ≤  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 15 | 11 14 | impbid1 | ⊢ ( 𝑆  ∈  States  →  ( 1  ≤  ( 𝑆 ‘ 𝐴 )  ↔  ( 𝑆 ‘ 𝐴 )  =  1 ) ) |