| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 |  |-  A e. CH | 
						
							| 2 |  | stle1 |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) | 
						
							| 3 | 1 2 | mpi |  |-  ( S e. States -> ( S ` A ) <_ 1 ) | 
						
							| 4 | 3 | anim1i |  |-  ( ( S e. States /\ 1 <_ ( S ` A ) ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) | 
						
							| 5 | 4 | ex |  |-  ( S e. States -> ( 1 <_ ( S ` A ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) | 
						
							| 6 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 7 | 1 6 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 8 |  | 1re |  |-  1 e. RR | 
						
							| 9 |  | letri3 |  |-  ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( S e. States -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) | 
						
							| 11 | 5 10 | sylibrd |  |-  ( S e. States -> ( 1 <_ ( S ` A ) -> ( S ` A ) = 1 ) ) | 
						
							| 12 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 13 |  | breq2 |  |-  ( ( S ` A ) = 1 -> ( 1 <_ ( S ` A ) <-> 1 <_ 1 ) ) | 
						
							| 14 | 12 13 | mpbiri |  |-  ( ( S ` A ) = 1 -> 1 <_ ( S ` A ) ) | 
						
							| 15 | 11 14 | impbid1 |  |-  ( S e. States -> ( 1 <_ ( S ` A ) <-> ( S ` A ) = 1 ) ) |