Step |
Hyp |
Ref |
Expression |
1 |
|
sto1.1 |
|- A e. CH |
2 |
|
stle1 |
|- ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) |
3 |
1 2
|
mpi |
|- ( S e. States -> ( S ` A ) <_ 1 ) |
4 |
3
|
anim1i |
|- ( ( S e. States /\ 1 <_ ( S ` A ) ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) |
5 |
4
|
ex |
|- ( S e. States -> ( 1 <_ ( S ` A ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) |
6 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
7 |
1 6
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
8 |
|
1re |
|- 1 e. RR |
9 |
|
letri3 |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) |
10 |
7 8 9
|
sylancl |
|- ( S e. States -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) ) |
11 |
5 10
|
sylibrd |
|- ( S e. States -> ( 1 <_ ( S ` A ) -> ( S ` A ) = 1 ) ) |
12 |
|
1le1 |
|- 1 <_ 1 |
13 |
|
breq2 |
|- ( ( S ` A ) = 1 -> ( 1 <_ ( S ` A ) <-> 1 <_ 1 ) ) |
14 |
12 13
|
mpbiri |
|- ( ( S ` A ) = 1 -> 1 <_ ( S ` A ) ) |
15 |
11 14
|
impbid1 |
|- ( S e. States -> ( 1 <_ ( S ` A ) <-> ( S ` A ) = 1 ) ) |