Metamath Proof Explorer


Theorem stge1i

Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1
|- A e. CH
Assertion stge1i
|- ( S e. States -> ( 1 <_ ( S ` A ) <-> ( S ` A ) = 1 ) )

Proof

Step Hyp Ref Expression
1 sto1.1
 |-  A e. CH
2 stle1
 |-  ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) )
3 1 2 mpi
 |-  ( S e. States -> ( S ` A ) <_ 1 )
4 3 anim1i
 |-  ( ( S e. States /\ 1 <_ ( S ` A ) ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) )
5 4 ex
 |-  ( S e. States -> ( 1 <_ ( S ` A ) -> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) )
6 stcl
 |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) )
7 1 6 mpi
 |-  ( S e. States -> ( S ` A ) e. RR )
8 1re
 |-  1 e. RR
9 letri3
 |-  ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) )
10 7 8 9 sylancl
 |-  ( S e. States -> ( ( S ` A ) = 1 <-> ( ( S ` A ) <_ 1 /\ 1 <_ ( S ` A ) ) ) )
11 5 10 sylibrd
 |-  ( S e. States -> ( 1 <_ ( S ` A ) -> ( S ` A ) = 1 ) )
12 1le1
 |-  1 <_ 1
13 breq2
 |-  ( ( S ` A ) = 1 -> ( 1 <_ ( S ` A ) <-> 1 <_ 1 ) )
14 12 13 mpbiri
 |-  ( ( S ` A ) = 1 -> 1 <_ ( S ` A ) )
15 11 14 impbid1
 |-  ( S e. States -> ( 1 <_ ( S ` A ) <-> ( S ` A ) = 1 ) )