Metamath Proof Explorer


Theorem stle0i

Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1
|- A e. CH
Assertion stle0i
|- ( S e. States -> ( ( S ` A ) <_ 0 <-> ( S ` A ) = 0 ) )

Proof

Step Hyp Ref Expression
1 sto1.1
 |-  A e. CH
2 stge0
 |-  ( S e. States -> ( A e. CH -> 0 <_ ( S ` A ) ) )
3 1 2 mpi
 |-  ( S e. States -> 0 <_ ( S ` A ) )
4 3 anim2i
 |-  ( ( ( S ` A ) <_ 0 /\ S e. States ) -> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) )
5 4 expcom
 |-  ( S e. States -> ( ( S ` A ) <_ 0 -> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) )
6 stcl
 |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) )
7 1 6 mpi
 |-  ( S e. States -> ( S ` A ) e. RR )
8 0re
 |-  0 e. RR
9 letri3
 |-  ( ( ( S ` A ) e. RR /\ 0 e. RR ) -> ( ( S ` A ) = 0 <-> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) )
10 7 8 9 sylancl
 |-  ( S e. States -> ( ( S ` A ) = 0 <-> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) )
11 5 10 sylibrd
 |-  ( S e. States -> ( ( S ` A ) <_ 0 -> ( S ` A ) = 0 ) )
12 0le0
 |-  0 <_ 0
13 breq1
 |-  ( ( S ` A ) = 0 -> ( ( S ` A ) <_ 0 <-> 0 <_ 0 ) )
14 12 13 mpbiri
 |-  ( ( S ` A ) = 0 -> ( S ` A ) <_ 0 )
15 11 14 impbid1
 |-  ( S e. States -> ( ( S ` A ) <_ 0 <-> ( S ` A ) = 0 ) )