| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 |  |-  A e. CH | 
						
							| 2 |  | stge0 |  |-  ( S e. States -> ( A e. CH -> 0 <_ ( S ` A ) ) ) | 
						
							| 3 | 1 2 | mpi |  |-  ( S e. States -> 0 <_ ( S ` A ) ) | 
						
							| 4 | 3 | anim2i |  |-  ( ( ( S ` A ) <_ 0 /\ S e. States ) -> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) | 
						
							| 5 | 4 | expcom |  |-  ( S e. States -> ( ( S ` A ) <_ 0 -> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) ) | 
						
							| 6 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 7 | 1 6 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | letri3 |  |-  ( ( ( S ` A ) e. RR /\ 0 e. RR ) -> ( ( S ` A ) = 0 <-> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( S e. States -> ( ( S ` A ) = 0 <-> ( ( S ` A ) <_ 0 /\ 0 <_ ( S ` A ) ) ) ) | 
						
							| 11 | 5 10 | sylibrd |  |-  ( S e. States -> ( ( S ` A ) <_ 0 -> ( S ` A ) = 0 ) ) | 
						
							| 12 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 13 |  | breq1 |  |-  ( ( S ` A ) = 0 -> ( ( S ` A ) <_ 0 <-> 0 <_ 0 ) ) | 
						
							| 14 | 12 13 | mpbiri |  |-  ( ( S ` A ) = 0 -> ( S ` A ) <_ 0 ) | 
						
							| 15 | 11 14 | impbid1 |  |-  ( S e. States -> ( ( S ` A ) <_ 0 <-> ( S ` A ) = 0 ) ) |