Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
|- A e. CH |
2 |
|
stle.2 |
|- B e. CH |
3 |
2
|
chshii |
|- B e. SH |
4 |
|
shococss |
|- ( B e. SH -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
5 |
3 4
|
ax-mp |
|- B C_ ( _|_ ` ( _|_ ` B ) ) |
6 |
|
sstr2 |
|- ( A C_ B -> ( B C_ ( _|_ ` ( _|_ ` B ) ) -> A C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
7 |
5 6
|
mpi |
|- ( A C_ B -> A C_ ( _|_ ` ( _|_ ` B ) ) ) |
8 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
9 |
1 8
|
pm3.2i |
|- ( A e. CH /\ ( _|_ ` B ) e. CH ) |
10 |
7 9
|
jctil |
|- ( A C_ B -> ( ( A e. CH /\ ( _|_ ` B ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
11 |
|
stj |
|- ( S e. States -> ( ( ( A e. CH /\ ( _|_ ` B ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` B ) ) ) -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) ) |
12 |
10 11
|
syl5 |
|- ( S e. States -> ( A C_ B -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) ) |
13 |
12
|
imp |
|- ( ( S e. States /\ A C_ B ) -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) |
14 |
1 8
|
chjcli |
|- ( A vH ( _|_ ` B ) ) e. CH |
15 |
|
stle1 |
|- ( S e. States -> ( ( A vH ( _|_ ` B ) ) e. CH -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ 1 ) ) |
16 |
14 15
|
mpi |
|- ( S e. States -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ 1 ) |
17 |
2
|
sto1i |
|- ( S e. States -> ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) = 1 ) |
18 |
16 17
|
breqtrrd |
|- ( S e. States -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) |
19 |
18
|
adantr |
|- ( ( S e. States /\ A C_ B ) -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) |
20 |
13 19
|
eqbrtrrd |
|- ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) |
21 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
22 |
1 21
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
23 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
24 |
2 23
|
mpi |
|- ( S e. States -> ( S ` B ) e. RR ) |
25 |
|
stcl |
|- ( S e. States -> ( ( _|_ ` B ) e. CH -> ( S ` ( _|_ ` B ) ) e. RR ) ) |
26 |
8 25
|
mpi |
|- ( S e. States -> ( S ` ( _|_ ` B ) ) e. RR ) |
27 |
22 24 26
|
3jca |
|- ( S e. States -> ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) ) |
28 |
27
|
adantr |
|- ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) ) |
29 |
|
leadd1 |
|- ( ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) -> ( ( S ` A ) <_ ( S ` B ) <-> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) ) |
30 |
28 29
|
syl |
|- ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) <_ ( S ` B ) <-> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) ) |
31 |
20 30
|
mpbird |
|- ( ( S e. States /\ A C_ B ) -> ( S ` A ) <_ ( S ` B ) ) |
32 |
31
|
ex |
|- ( S e. States -> ( A C_ B -> ( S ` A ) <_ ( S ` B ) ) ) |