| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 |  |-  A e. CH | 
						
							| 2 |  | stle.2 |  |-  B e. CH | 
						
							| 3 | 2 | chshii |  |-  B e. SH | 
						
							| 4 |  | shococss |  |-  ( B e. SH -> B C_ ( _|_ ` ( _|_ ` B ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  B C_ ( _|_ ` ( _|_ ` B ) ) | 
						
							| 6 |  | sstr2 |  |-  ( A C_ B -> ( B C_ ( _|_ ` ( _|_ ` B ) ) -> A C_ ( _|_ ` ( _|_ ` B ) ) ) ) | 
						
							| 7 | 5 6 | mpi |  |-  ( A C_ B -> A C_ ( _|_ ` ( _|_ ` B ) ) ) | 
						
							| 8 | 2 | choccli |  |-  ( _|_ ` B ) e. CH | 
						
							| 9 | 1 8 | pm3.2i |  |-  ( A e. CH /\ ( _|_ ` B ) e. CH ) | 
						
							| 10 | 7 9 | jctil |  |-  ( A C_ B -> ( ( A e. CH /\ ( _|_ ` B ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` B ) ) ) ) | 
						
							| 11 |  | stj |  |-  ( S e. States -> ( ( ( A e. CH /\ ( _|_ ` B ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` B ) ) ) -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) ) | 
						
							| 12 | 10 11 | syl5 |  |-  ( S e. States -> ( A C_ B -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( S e. States /\ A C_ B ) -> ( S ` ( A vH ( _|_ ` B ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) ) | 
						
							| 14 | 1 8 | chjcli |  |-  ( A vH ( _|_ ` B ) ) e. CH | 
						
							| 15 |  | stle1 |  |-  ( S e. States -> ( ( A vH ( _|_ ` B ) ) e. CH -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ 1 ) ) | 
						
							| 16 | 14 15 | mpi |  |-  ( S e. States -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ 1 ) | 
						
							| 17 | 2 | sto1i |  |-  ( S e. States -> ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) = 1 ) | 
						
							| 18 | 16 17 | breqtrrd |  |-  ( S e. States -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( S e. States /\ A C_ B ) -> ( S ` ( A vH ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) | 
						
							| 20 | 13 19 | eqbrtrrd |  |-  ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) | 
						
							| 21 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 22 | 1 21 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 23 |  | stcl |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) | 
						
							| 24 | 2 23 | mpi |  |-  ( S e. States -> ( S ` B ) e. RR ) | 
						
							| 25 |  | stcl |  |-  ( S e. States -> ( ( _|_ ` B ) e. CH -> ( S ` ( _|_ ` B ) ) e. RR ) ) | 
						
							| 26 | 8 25 | mpi |  |-  ( S e. States -> ( S ` ( _|_ ` B ) ) e. RR ) | 
						
							| 27 | 22 24 26 | 3jca |  |-  ( S e. States -> ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) ) | 
						
							| 29 |  | leadd1 |  |-  ( ( ( S ` A ) e. RR /\ ( S ` B ) e. RR /\ ( S ` ( _|_ ` B ) ) e. RR ) -> ( ( S ` A ) <_ ( S ` B ) <-> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( S e. States /\ A C_ B ) -> ( ( S ` A ) <_ ( S ` B ) <-> ( ( S ` A ) + ( S ` ( _|_ ` B ) ) ) <_ ( ( S ` B ) + ( S ` ( _|_ ` B ) ) ) ) ) | 
						
							| 31 | 20 30 | mpbird |  |-  ( ( S e. States /\ A C_ B ) -> ( S ` A ) <_ ( S ` B ) ) | 
						
							| 32 | 31 | ex |  |-  ( S e. States -> ( A C_ B -> ( S ` A ) <_ ( S ` B ) ) ) |