Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
4 |
|
shococss |
⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) |
6 |
|
sstr2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
7 |
5 6
|
mpi |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
8 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
9 |
1 8
|
pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
10 |
7 9
|
jctil |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
11 |
|
stj |
⊢ ( 𝑆 ∈ States → ( ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
12 |
10 11
|
syl5 |
⊢ ( 𝑆 ∈ States → ( 𝐴 ⊆ 𝐵 → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
14 |
1 8
|
chjcli |
⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
15 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ≤ 1 ) ) |
16 |
14 15
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ≤ 1 ) |
17 |
2
|
sto1i |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) = 1 ) |
18 |
16 17
|
breqtrrd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
20 |
13 19
|
eqbrtrrd |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
21 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) ) |
22 |
1 21
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
23 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) ) |
24 |
2 23
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) |
25 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) ) |
26 |
8 25
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) |
27 |
22 24 26
|
3jca |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑆 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑆 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) ) |
29 |
|
leadd1 |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑆 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) ≤ ( 𝑆 ‘ 𝐵 ) ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑆 ‘ 𝐴 ) ≤ ( 𝑆 ‘ 𝐵 ) ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
31 |
20 30
|
mpbird |
⊢ ( ( 𝑆 ∈ States ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑆 ‘ 𝐴 ) ≤ ( 𝑆 ‘ 𝐵 ) ) |
32 |
31
|
ex |
⊢ ( 𝑆 ∈ States → ( 𝐴 ⊆ 𝐵 → ( 𝑆 ‘ 𝐴 ) ≤ ( 𝑆 ‘ 𝐵 ) ) ) |