| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 2 | chshii | ⊢ 𝐵  ∈   Sℋ | 
						
							| 4 |  | shococss | ⊢ ( 𝐵  ∈   Sℋ   →  𝐵  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 𝐵  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) | 
						
							| 6 |  | sstr2 | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐵  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 7 | 5 6 | mpi | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 8 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 9 | 1 8 | pm3.2i | ⊢ ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  ) | 
						
							| 10 | 7 9 | jctil | ⊢ ( 𝐴  ⊆  𝐵  →  ( ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 11 |  | stj | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 12 | 10 11 | syl5 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ⊆  𝐵  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 14 | 1 8 | chjcli | ⊢ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ | 
						
							| 15 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ   →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ≤  1 ) ) | 
						
							| 16 | 14 15 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ≤  1 ) | 
						
							| 17 | 2 | sto1i | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  =  1 ) | 
						
							| 18 | 16 17 | breqtrrd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ≤  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ≤  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 20 | 13 19 | eqbrtrrd | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  ≤  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 21 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 22 | 1 21 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 23 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 24 | 2 23 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 25 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( ( ⊥ ‘ 𝐵 )  ∈   Cℋ   →  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) ) | 
						
							| 26 | 8 25 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 27 | 22 24 26 | 3jca | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ ) ) | 
						
							| 29 |  | leadd1 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 )  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  ≤  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 )  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  ≤  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 31 | 20 30 | mpbird | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ⊆  𝐵  →  ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 ) ) ) |