Metamath Proof Explorer


Theorem stlei

Description: Ordering law for states. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 𝐴C
stle.2 𝐵C
Assertion stlei ( 𝑆 ∈ States → ( 𝐴𝐵 → ( 𝑆𝐴 ) ≤ ( 𝑆𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 stle.1 𝐴C
2 stle.2 𝐵C
3 2 chshii 𝐵S
4 shococss ( 𝐵S𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
5 3 4 ax-mp 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )
6 sstr2 ( 𝐴𝐵 → ( 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
7 5 6 mpi ( 𝐴𝐵𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
8 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
9 1 8 pm3.2i ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C )
10 7 9 jctil ( 𝐴𝐵 → ( ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
11 stj ( 𝑆 ∈ States → ( ( ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
12 10 11 syl5 ( 𝑆 ∈ States → ( 𝐴𝐵 → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
13 12 imp ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) )
14 1 8 chjcli ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C
15 stle1 ( 𝑆 ∈ States → ( ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ≤ 1 ) )
16 14 15 mpi ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ≤ 1 )
17 2 sto1i ( 𝑆 ∈ States → ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) = 1 )
18 16 17 breqtrrd ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) )
19 18 adantr ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) )
20 13 19 eqbrtrrd ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) )
21 stcl ( 𝑆 ∈ States → ( 𝐴C → ( 𝑆𝐴 ) ∈ ℝ ) )
22 1 21 mpi ( 𝑆 ∈ States → ( 𝑆𝐴 ) ∈ ℝ )
23 stcl ( 𝑆 ∈ States → ( 𝐵C → ( 𝑆𝐵 ) ∈ ℝ ) )
24 2 23 mpi ( 𝑆 ∈ States → ( 𝑆𝐵 ) ∈ ℝ )
25 stcl ( 𝑆 ∈ States → ( ( ⊥ ‘ 𝐵 ) ∈ C → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) )
26 8 25 mpi ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ )
27 22 24 26 3jca ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) ∈ ℝ ∧ ( 𝑆𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) )
28 27 adantr ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( ( 𝑆𝐴 ) ∈ ℝ ∧ ( 𝑆𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) )
29 leadd1 ( ( ( 𝑆𝐴 ) ∈ ℝ ∧ ( 𝑆𝐵 ) ∈ ℝ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℝ ) → ( ( 𝑆𝐴 ) ≤ ( 𝑆𝐵 ) ↔ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
30 28 29 syl ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( ( 𝑆𝐴 ) ≤ ( 𝑆𝐵 ) ↔ ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ≤ ( ( 𝑆𝐵 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
31 20 30 mpbird ( ( 𝑆 ∈ States ∧ 𝐴𝐵 ) → ( 𝑆𝐴 ) ≤ ( 𝑆𝐵 ) )
32 31 ex ( 𝑆 ∈ States → ( 𝐴𝐵 → ( 𝑆𝐴 ) ≤ ( 𝑆𝐵 ) ) )