| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) ) | 
						
							| 4 | 2 3 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) | 
						
							| 6 | 1 2 | stlei | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ⊆  𝐵  →  ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝑆  ∈  States  ∧  𝐴  ⊆  𝐵 )  →  ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 8 | 7 | adantrr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  1  →  ( ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 )  ↔  1  ≤  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 10 | 9 | ad2antll | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  ( 𝑆 ‘ 𝐵 )  ↔  1  ≤  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 11 | 8 10 | mpbid | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  1  ≤  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 12 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 13 | 2 12 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 14 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 15 | 13 14 | jctir | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 17 |  | letri3 | ⊢ ( ( ( 𝑆 ‘ 𝐵 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐵 )  =  1  ↔  ( ( 𝑆 ‘ 𝐵 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( ( 𝑆 ‘ 𝐵 )  =  1  ↔  ( ( 𝑆 ‘ 𝐵 )  ≤  1  ∧  1  ≤  ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 19 | 5 11 18 | mpbir2and | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝐴  ⊆  𝐵  ∧  ( 𝑆 ‘ 𝐴 )  =  1 ) )  →  ( 𝑆 ‘ 𝐵 )  =  1 ) | 
						
							| 20 | 19 | exp32 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ⊆  𝐵  →  ( ( 𝑆 ‘ 𝐴 )  =  1  →  ( 𝑆 ‘ 𝐵 )  =  1 ) ) ) |