| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 |  |-  A e. CH | 
						
							| 2 |  | stle.2 |  |-  B e. CH | 
						
							| 3 |  | stle1 |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) | 
						
							| 4 | 2 3 | mpi |  |-  ( S e. States -> ( S ` B ) <_ 1 ) | 
						
							| 5 | 4 | adantr |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( S ` B ) <_ 1 ) | 
						
							| 6 | 1 2 | stlei |  |-  ( S e. States -> ( A C_ B -> ( S ` A ) <_ ( S ` B ) ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( S e. States /\ A C_ B ) -> ( S ` A ) <_ ( S ` B ) ) | 
						
							| 8 | 7 | adantrr |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( S ` A ) <_ ( S ` B ) ) | 
						
							| 9 |  | breq1 |  |-  ( ( S ` A ) = 1 -> ( ( S ` A ) <_ ( S ` B ) <-> 1 <_ ( S ` B ) ) ) | 
						
							| 10 | 9 | ad2antll |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( ( S ` A ) <_ ( S ` B ) <-> 1 <_ ( S ` B ) ) ) | 
						
							| 11 | 8 10 | mpbid |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> 1 <_ ( S ` B ) ) | 
						
							| 12 |  | stcl |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) | 
						
							| 13 | 2 12 | mpi |  |-  ( S e. States -> ( S ` B ) e. RR ) | 
						
							| 14 |  | 1re |  |-  1 e. RR | 
						
							| 15 | 13 14 | jctir |  |-  ( S e. States -> ( ( S ` B ) e. RR /\ 1 e. RR ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( ( S ` B ) e. RR /\ 1 e. RR ) ) | 
						
							| 17 |  | letri3 |  |-  ( ( ( S ` B ) e. RR /\ 1 e. RR ) -> ( ( S ` B ) = 1 <-> ( ( S ` B ) <_ 1 /\ 1 <_ ( S ` B ) ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( ( S ` B ) = 1 <-> ( ( S ` B ) <_ 1 /\ 1 <_ ( S ` B ) ) ) ) | 
						
							| 19 | 5 11 18 | mpbir2and |  |-  ( ( S e. States /\ ( A C_ B /\ ( S ` A ) = 1 ) ) -> ( S ` B ) = 1 ) | 
						
							| 20 | 19 | exp32 |  |-  ( S e. States -> ( A C_ B -> ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) ) ) |