| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 4 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 5 | 3 4 | pm3.2i | ⊢ ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  ( 𝐴  ∩  𝐵 )  ∈   Cℋ  ) | 
						
							| 6 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 7 | 4 1 | chsscon3i | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐴  ↔  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 8 | 6 7 | mpbi | ⊢ ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) | 
						
							| 9 |  | stj | ⊢ ( 𝑆  ∈  States  →  ( ( ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  ( 𝐴  ∩  𝐵 )  ∈   Cℋ  )  ∧  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) ) | 
						
							| 10 | 5 8 9 | mp2ani | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) |