Metamath Proof Explorer


Theorem stji1i

Description: Join of components of Sasaki arrow ->1. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 𝐴C
stle.2 𝐵C
Assertion stji1i ( 𝑆 ∈ States → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 stle.1 𝐴C
2 stle.2 𝐵C
3 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
4 1 2 chincli ( 𝐴𝐵 ) ∈ C
5 3 4 pm3.2i ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( 𝐴𝐵 ) ∈ C )
6 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
7 4 1 chsscon3i ( ( 𝐴𝐵 ) ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
8 6 7 mpbi ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴𝐵 ) )
9 stj ( 𝑆 ∈ States → ( ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( 𝐴𝐵 ) ∈ C ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴𝐵 ) ) ) ) )
10 5 8 9 mp2ani ( 𝑆 ∈ States → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴𝐵 ) ) ) )