Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
4 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
5 |
4 1
|
stlei |
⊢ ( 𝑆 ∈ States → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
6 |
3 5
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑆 ‘ 𝐴 ) ) |
7 |
|
breq1 |
⊢ ( ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 → ( ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ≤ ( 𝑆 ‘ 𝐴 ) ↔ 1 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
8 |
6 7
|
syl5ibcom |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 → 1 ≤ ( 𝑆 ‘ 𝐴 ) ) ) |
9 |
1
|
stge1i |
⊢ ( 𝑆 ∈ States → ( 1 ≤ ( 𝑆 ‘ 𝐴 ) ↔ ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
10 |
8 9
|
sylibd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |