| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 4 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 5 | 4 1 | stlei | ⊢ ( 𝑆  ∈  States  →  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐴  →  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 6 | 3 5 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  ≤  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 7 |  | breq1 | ⊢ ( ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1  →  ( ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  ≤  ( 𝑆 ‘ 𝐴 )  ↔  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | syl5ibcom | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1  →  1  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 9 | 1 | stge1i | ⊢ ( 𝑆  ∈  States  →  ( 1  ≤  ( 𝑆 ‘ 𝐴 )  ↔  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 10 | 8 9 | sylibd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) |