| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 |  |-  A e. CH | 
						
							| 2 |  | stle.2 |  |-  B e. CH | 
						
							| 3 |  | inss1 |  |-  ( A i^i B ) C_ A | 
						
							| 4 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 5 | 4 1 | stlei |  |-  ( S e. States -> ( ( A i^i B ) C_ A -> ( S ` ( A i^i B ) ) <_ ( S ` A ) ) ) | 
						
							| 6 | 3 5 | mpi |  |-  ( S e. States -> ( S ` ( A i^i B ) ) <_ ( S ` A ) ) | 
						
							| 7 |  | breq1 |  |-  ( ( S ` ( A i^i B ) ) = 1 -> ( ( S ` ( A i^i B ) ) <_ ( S ` A ) <-> 1 <_ ( S ` A ) ) ) | 
						
							| 8 | 6 7 | syl5ibcom |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> 1 <_ ( S ` A ) ) ) | 
						
							| 9 | 1 | stge1i |  |-  ( S e. States -> ( 1 <_ ( S ` A ) <-> ( S ` A ) = 1 ) ) | 
						
							| 10 | 8 9 | sylibd |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( S ` A ) = 1 ) ) |