Metamath Proof Explorer


Theorem stm1ri

Description: State of component of unit meet. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1
|- A e. CH
stle.2
|- B e. CH
Assertion stm1ri
|- ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( S ` B ) = 1 ) )

Proof

Step Hyp Ref Expression
1 stle.1
 |-  A e. CH
2 stle.2
 |-  B e. CH
3 incom
 |-  ( A i^i B ) = ( B i^i A )
4 3 fveq2i
 |-  ( S ` ( A i^i B ) ) = ( S ` ( B i^i A ) )
5 4 eqeq1i
 |-  ( ( S ` ( A i^i B ) ) = 1 <-> ( S ` ( B i^i A ) ) = 1 )
6 2 1 stm1i
 |-  ( S e. States -> ( ( S ` ( B i^i A ) ) = 1 -> ( S ` B ) = 1 ) )
7 5 6 syl5bi
 |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( S ` B ) = 1 ) )