| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 |  |-  A e. CH | 
						
							| 2 |  | stle.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | stm1i |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( S ` A ) = 1 ) ) | 
						
							| 4 | 1 2 | stm1ri |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( S ` B ) = 1 ) ) | 
						
							| 5 | 3 4 | jcad |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) ) ) | 
						
							| 6 |  | oveq12 |  |-  ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) -> ( ( S ` A ) + ( S ` B ) ) = ( 1 + 1 ) ) | 
						
							| 7 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 8 | 6 7 | eqtr4di |  |-  ( ( ( S ` A ) = 1 /\ ( S ` B ) = 1 ) -> ( ( S ` A ) + ( S ` B ) ) = 2 ) | 
						
							| 9 | 5 8 | syl6 |  |-  ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( ( S ` A ) + ( S ` B ) ) = 2 ) ) |