Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
|- A e. CH |
2 |
|
stle.2 |
|- B e. CH |
3 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
4 |
1 3
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
5 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
6 |
2 5
|
mpi |
|- ( S e. States -> ( S ` B ) e. RR ) |
7 |
4 6
|
readdcld |
|- ( S e. States -> ( ( S ` A ) + ( S ` B ) ) e. RR ) |
8 |
|
ltne |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> 2 =/= ( ( S ` A ) + ( S ` B ) ) ) |
9 |
8
|
necomd |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) |
10 |
7 9
|
sylan |
|- ( ( S e. States /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) |
11 |
10
|
ex |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) < 2 -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) ) |
12 |
11
|
necon2bd |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> -. ( ( S ` A ) + ( S ` B ) ) < 2 ) ) |
13 |
|
1re |
|- 1 e. RR |
14 |
13
|
a1i |
|- ( S e. States -> 1 e. RR ) |
15 |
|
stle1 |
|- ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) |
16 |
2 15
|
mpi |
|- ( S e. States -> ( S ` B ) <_ 1 ) |
17 |
6 14 4 16
|
leadd2dd |
|- ( S e. States -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) |
18 |
17
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) |
19 |
|
ltadd1 |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 <-> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
20 |
19
|
biimpd |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
21 |
4 14 14 20
|
syl3anc |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
22 |
21
|
imp |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) |
23 |
|
readdcl |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) + 1 ) e. RR ) |
24 |
4 13 23
|
sylancl |
|- ( S e. States -> ( ( S ` A ) + 1 ) e. RR ) |
25 |
13 13
|
readdcli |
|- ( 1 + 1 ) e. RR |
26 |
25
|
a1i |
|- ( S e. States -> ( 1 + 1 ) e. RR ) |
27 |
|
lelttr |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + 1 ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
28 |
7 24 26 27
|
syl3anc |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
29 |
28
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
30 |
18 22 29
|
mp2and |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) |
31 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
32 |
30 31
|
breqtrrdi |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < 2 ) |
33 |
32
|
ex |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( S ` B ) ) < 2 ) ) |
34 |
33
|
con3d |
|- ( S e. States -> ( -. ( ( S ` A ) + ( S ` B ) ) < 2 -> -. ( S ` A ) < 1 ) ) |
35 |
|
stle1 |
|- ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) |
36 |
1 35
|
mpi |
|- ( S e. States -> ( S ` A ) <_ 1 ) |
37 |
|
leloe |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
38 |
4 13 37
|
sylancl |
|- ( S e. States -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
39 |
36 38
|
mpbid |
|- ( S e. States -> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) |
40 |
39
|
ord |
|- ( S e. States -> ( -. ( S ` A ) < 1 -> ( S ` A ) = 1 ) ) |
41 |
12 34 40
|
3syld |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> ( S ` A ) = 1 ) ) |