| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 |  |-  A e. CH | 
						
							| 2 |  | stle.2 |  |-  B e. CH | 
						
							| 3 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 4 | 1 3 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 5 |  | stcl |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) | 
						
							| 6 | 2 5 | mpi |  |-  ( S e. States -> ( S ` B ) e. RR ) | 
						
							| 7 | 4 6 | readdcld |  |-  ( S e. States -> ( ( S ` A ) + ( S ` B ) ) e. RR ) | 
						
							| 8 |  | ltne |  |-  ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> 2 =/= ( ( S ` A ) + ( S ` B ) ) ) | 
						
							| 9 | 8 | necomd |  |-  ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) | 
						
							| 10 | 7 9 | sylan |  |-  ( ( S e. States /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) | 
						
							| 11 | 10 | ex |  |-  ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) < 2 -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) ) | 
						
							| 12 | 11 | necon2bd |  |-  ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> -. ( ( S ` A ) + ( S ` B ) ) < 2 ) ) | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 | 13 | a1i |  |-  ( S e. States -> 1 e. RR ) | 
						
							| 15 |  | stle1 |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) | 
						
							| 16 | 2 15 | mpi |  |-  ( S e. States -> ( S ` B ) <_ 1 ) | 
						
							| 17 | 6 14 4 16 | leadd2dd |  |-  ( S e. States -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) | 
						
							| 19 |  | ltadd1 |  |-  ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 <-> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) | 
						
							| 20 | 19 | biimpd |  |-  ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) | 
						
							| 21 | 4 14 14 20 | syl3anc |  |-  ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) | 
						
							| 23 |  | readdcl |  |-  ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) + 1 ) e. RR ) | 
						
							| 24 | 4 13 23 | sylancl |  |-  ( S e. States -> ( ( S ` A ) + 1 ) e. RR ) | 
						
							| 25 | 13 13 | readdcli |  |-  ( 1 + 1 ) e. RR | 
						
							| 26 | 25 | a1i |  |-  ( S e. States -> ( 1 + 1 ) e. RR ) | 
						
							| 27 |  | lelttr |  |-  ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + 1 ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) | 
						
							| 28 | 7 24 26 27 | syl3anc |  |-  ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) | 
						
							| 30 | 18 22 29 | mp2and |  |-  ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) | 
						
							| 31 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 32 | 30 31 | breqtrrdi |  |-  ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < 2 ) | 
						
							| 33 | 32 | ex |  |-  ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( S ` B ) ) < 2 ) ) | 
						
							| 34 | 33 | con3d |  |-  ( S e. States -> ( -. ( ( S ` A ) + ( S ` B ) ) < 2 -> -. ( S ` A ) < 1 ) ) | 
						
							| 35 |  | stle1 |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) | 
						
							| 36 | 1 35 | mpi |  |-  ( S e. States -> ( S ` A ) <_ 1 ) | 
						
							| 37 |  | leloe |  |-  ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) | 
						
							| 38 | 4 13 37 | sylancl |  |-  ( S e. States -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) | 
						
							| 39 | 36 38 | mpbid |  |-  ( S e. States -> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) | 
						
							| 40 | 39 | ord |  |-  ( S e. States -> ( -. ( S ` A ) < 1 -> ( S ` A ) = 1 ) ) | 
						
							| 41 | 12 34 40 | 3syld |  |-  ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> ( S ` A ) = 1 ) ) |