Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
|- A e. CH |
2 |
|
stle.2 |
|- B e. CH |
3 |
|
stm1add3.3 |
|- C e. CH |
4 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
5 |
4 3
|
stm1i |
|- ( S e. States -> ( ( S ` ( ( A i^i B ) i^i C ) ) = 1 -> ( S ` ( A i^i B ) ) = 1 ) ) |
6 |
1 2
|
stm1addi |
|- ( S e. States -> ( ( S ` ( A i^i B ) ) = 1 -> ( ( S ` A ) + ( S ` B ) ) = 2 ) ) |
7 |
5 6
|
syld |
|- ( S e. States -> ( ( S ` ( ( A i^i B ) i^i C ) ) = 1 -> ( ( S ` A ) + ( S ` B ) ) = 2 ) ) |
8 |
4 3
|
stm1ri |
|- ( S e. States -> ( ( S ` ( ( A i^i B ) i^i C ) ) = 1 -> ( S ` C ) = 1 ) ) |
9 |
7 8
|
jcad |
|- ( S e. States -> ( ( S ` ( ( A i^i B ) i^i C ) ) = 1 -> ( ( ( S ` A ) + ( S ` B ) ) = 2 /\ ( S ` C ) = 1 ) ) ) |
10 |
|
oveq12 |
|- ( ( ( ( S ` A ) + ( S ` B ) ) = 2 /\ ( S ` C ) = 1 ) -> ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = ( 2 + 1 ) ) |
11 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
12 |
10 11
|
eqtr4di |
|- ( ( ( ( S ` A ) + ( S ` B ) ) = 2 /\ ( S ` C ) = 1 ) -> ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 ) |
13 |
9 12
|
syl6 |
|- ( S e. States -> ( ( S ` ( ( A i^i B ) i^i C ) ) = 1 -> ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 ) ) |