Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
stm1add3.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
5 |
4 3
|
stm1i |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) ) = 1 → ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 ) ) |
6 |
1 2
|
stm1addi |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = 1 → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 ) ) |
7 |
5 6
|
syld |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) ) = 1 → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 ) ) |
8 |
4 3
|
stm1ri |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) ) = 1 → ( 𝑆 ‘ 𝐶 ) = 1 ) ) |
9 |
7 8
|
jcad |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) ) = 1 → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 ∧ ( 𝑆 ‘ 𝐶 ) = 1 ) ) ) |
10 |
|
oveq12 |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 ∧ ( 𝑆 ‘ 𝐶 ) = 1 ) → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = ( 2 + 1 ) ) |
11 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
12 |
10 11
|
eqtr4di |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 ∧ ( 𝑆 ‘ 𝐶 ) = 1 ) → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = 3 ) |
13 |
9 12
|
syl6 |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐶 ) ) = 1 → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = 3 ) ) |