| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | stm1add3.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 5 | 4 3 | stm1i | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ( 𝐴  ∩  𝐵 )  ∩  𝐶 ) )  =  1  →  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1 ) ) | 
						
							| 6 | 1 2 | stm1addi | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2 ) ) | 
						
							| 7 | 5 6 | syld | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ( 𝐴  ∩  𝐵 )  ∩  𝐶 ) )  =  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2 ) ) | 
						
							| 8 | 4 3 | stm1ri | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ( 𝐴  ∩  𝐵 )  ∩  𝐶 ) )  =  1  →  ( 𝑆 ‘ 𝐶 )  =  1 ) ) | 
						
							| 9 | 7 8 | jcad | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ( 𝐴  ∩  𝐵 )  ∩  𝐶 ) )  =  1  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2  ∧  ( 𝑆 ‘ 𝐶 )  =  1 ) ) ) | 
						
							| 10 |  | oveq12 | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2  ∧  ( 𝑆 ‘ 𝐶 )  =  1 )  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  ( 2  +  1 ) ) | 
						
							| 11 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 12 | 10 11 | eqtr4di | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2  ∧  ( 𝑆 ‘ 𝐶 )  =  1 )  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  3 ) | 
						
							| 13 | 9 12 | syl6 | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ( 𝐴  ∩  𝐵 )  ∩  𝐶 ) )  =  1  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  3 ) ) |