Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
stm1add3.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) ) |
5 |
1 4
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) ) |
8 |
2 7
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ∈ ℂ ) |
10 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐶 ∈ Cℋ → ( 𝑆 ‘ 𝐶 ) ∈ ℝ ) ) |
11 |
3 10
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐶 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐶 ) ∈ ℂ ) |
13 |
6 9 12
|
addassd |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑆 ∈ States → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = 3 ↔ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) = 3 ) ) |
15 |
|
eqcom |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) = 3 ↔ 3 = ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ) |
16 |
8 11
|
readdcld |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ∈ ℝ ) |
17 |
5 16
|
readdcld |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ∈ ℝ ) |
18 |
|
ltne |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 ) → 3 ≠ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ) |
19 |
18
|
ex |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ∈ ℝ → ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 → 3 ≠ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ) ) |
20 |
17 19
|
syl |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 → 3 ≠ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ) ) |
21 |
20
|
necon2bd |
⊢ ( 𝑆 ∈ States → ( 3 = ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) → ¬ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 ) ) |
22 |
15 21
|
syl5bi |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) = 3 → ¬ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 ) ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
23 23
|
readdcli |
⊢ ( 1 + 1 ) ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝑆 ∈ States → ( 1 + 1 ) ∈ ℝ ) |
26 |
|
1red |
⊢ ( 𝑆 ∈ States → 1 ∈ ℝ ) |
27 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ≤ 1 ) ) |
28 |
2 27
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ≤ 1 ) |
29 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( 𝐶 ∈ Cℋ → ( 𝑆 ‘ 𝐶 ) ≤ 1 ) ) |
30 |
3 29
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐶 ) ≤ 1 ) |
31 |
8 11 26 26 28 30
|
le2addd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ≤ ( 1 + 1 ) ) |
32 |
16 25 5 31
|
leadd2dd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ) |
34 |
|
ltadd1 |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) < 1 ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
35 |
34
|
biimpd |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
36 |
5 26 25 35
|
syl3anc |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) |
38 |
|
readdcl |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∈ ℝ ) |
39 |
5 24 38
|
sylancl |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∈ ℝ ) |
40 |
23 24
|
readdcli |
⊢ ( 1 + ( 1 + 1 ) ) ∈ ℝ |
41 |
40
|
a1i |
⊢ ( 𝑆 ∈ States → ( 1 + ( 1 + 1 ) ) ∈ ℝ ) |
42 |
|
lelttr |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∈ ℝ ∧ ( 1 + ( 1 + 1 ) ) ∈ ℝ ) → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
43 |
17 39 41 42
|
syl3anc |
⊢ ( 𝑆 ∈ States → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
45 |
33 37 44
|
mp2and |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) |
46 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
47 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
48 |
47
|
oveq1i |
⊢ ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
49 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
50 |
49 49 49
|
addassi |
⊢ ( ( 1 + 1 ) + 1 ) = ( 1 + ( 1 + 1 ) ) |
51 |
46 48 50
|
3eqtrri |
⊢ ( 1 + ( 1 + 1 ) ) = 3 |
52 |
45 51
|
breqtrdi |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 ) |
53 |
52
|
ex |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 ) ) |
54 |
53
|
con3d |
⊢ ( 𝑆 ∈ States → ( ¬ ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) < 3 → ¬ ( 𝑆 ‘ 𝐴 ) < 1 ) ) |
55 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ≤ 1 ) ) |
56 |
1 55
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ≤ 1 ) |
57 |
|
leloe |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) ) |
58 |
5 23 57
|
sylancl |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) ) |
59 |
56 58
|
mpbid |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
60 |
59
|
ord |
⊢ ( 𝑆 ∈ States → ( ¬ ( 𝑆 ‘ 𝐴 ) < 1 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
61 |
22 54 60
|
3syld |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( ( 𝑆 ‘ 𝐵 ) + ( 𝑆 ‘ 𝐶 ) ) ) = 3 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
62 |
14 61
|
sylbid |
⊢ ( 𝑆 ∈ States → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) + ( 𝑆 ‘ 𝐶 ) ) = 3 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |