Metamath Proof Explorer


Theorem stadd3i

Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 𝐴C
stle.2 𝐵C
stm1add3.3 𝐶C
Assertion stadd3i ( 𝑆 ∈ States → ( ( ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) + ( 𝑆𝐶 ) ) = 3 → ( 𝑆𝐴 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 stle.1 𝐴C
2 stle.2 𝐵C
3 stm1add3.3 𝐶C
4 stcl ( 𝑆 ∈ States → ( 𝐴C → ( 𝑆𝐴 ) ∈ ℝ ) )
5 1 4 mpi ( 𝑆 ∈ States → ( 𝑆𝐴 ) ∈ ℝ )
6 5 recnd ( 𝑆 ∈ States → ( 𝑆𝐴 ) ∈ ℂ )
7 stcl ( 𝑆 ∈ States → ( 𝐵C → ( 𝑆𝐵 ) ∈ ℝ ) )
8 2 7 mpi ( 𝑆 ∈ States → ( 𝑆𝐵 ) ∈ ℝ )
9 8 recnd ( 𝑆 ∈ States → ( 𝑆𝐵 ) ∈ ℂ )
10 stcl ( 𝑆 ∈ States → ( 𝐶C → ( 𝑆𝐶 ) ∈ ℝ ) )
11 3 10 mpi ( 𝑆 ∈ States → ( 𝑆𝐶 ) ∈ ℝ )
12 11 recnd ( 𝑆 ∈ States → ( 𝑆𝐶 ) ∈ ℂ )
13 6 9 12 addassd ( 𝑆 ∈ States → ( ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) + ( 𝑆𝐶 ) ) = ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) )
14 13 eqeq1d ( 𝑆 ∈ States → ( ( ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) + ( 𝑆𝐶 ) ) = 3 ↔ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) = 3 ) )
15 eqcom ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) = 3 ↔ 3 = ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) )
16 8 11 readdcld ( 𝑆 ∈ States → ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ∈ ℝ )
17 5 16 readdcld ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ∈ ℝ )
18 ltne ( ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ∈ ℝ ∧ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 ) → 3 ≠ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) )
19 18 ex ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ∈ ℝ → ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 → 3 ≠ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ) )
20 17 19 syl ( 𝑆 ∈ States → ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 → 3 ≠ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ) )
21 20 necon2bd ( 𝑆 ∈ States → ( 3 = ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) → ¬ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 ) )
22 15 21 syl5bi ( 𝑆 ∈ States → ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) = 3 → ¬ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 ) )
23 1re 1 ∈ ℝ
24 23 23 readdcli ( 1 + 1 ) ∈ ℝ
25 24 a1i ( 𝑆 ∈ States → ( 1 + 1 ) ∈ ℝ )
26 1red ( 𝑆 ∈ States → 1 ∈ ℝ )
27 stle1 ( 𝑆 ∈ States → ( 𝐵C → ( 𝑆𝐵 ) ≤ 1 ) )
28 2 27 mpi ( 𝑆 ∈ States → ( 𝑆𝐵 ) ≤ 1 )
29 stle1 ( 𝑆 ∈ States → ( 𝐶C → ( 𝑆𝐶 ) ≤ 1 ) )
30 3 29 mpi ( 𝑆 ∈ States → ( 𝑆𝐶 ) ≤ 1 )
31 8 11 26 26 28 30 le2addd ( 𝑆 ∈ States → ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ≤ ( 1 + 1 ) )
32 16 25 5 31 leadd2dd ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ≤ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) )
33 32 adantr ( ( 𝑆 ∈ States ∧ ( 𝑆𝐴 ) < 1 ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ≤ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) )
34 ltadd1 ( ( ( 𝑆𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆𝐴 ) < 1 ↔ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) )
35 34 biimpd ( ( ( 𝑆𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆𝐴 ) < 1 → ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) )
36 5 26 25 35 syl3anc ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) < 1 → ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) )
37 36 imp ( ( 𝑆 ∈ States ∧ ( 𝑆𝐴 ) < 1 ) → ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) )
38 readdcl ( ( ( 𝑆𝐴 ) ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∈ ℝ )
39 5 24 38 sylancl ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∈ ℝ )
40 23 24 readdcli ( 1 + ( 1 + 1 ) ) ∈ ℝ
41 40 a1i ( 𝑆 ∈ States → ( 1 + ( 1 + 1 ) ) ∈ ℝ )
42 lelttr ( ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ∈ ℝ ∧ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∈ ℝ ∧ ( 1 + ( 1 + 1 ) ) ∈ ℝ ) → ( ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ≤ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) )
43 17 39 41 42 syl3anc ( 𝑆 ∈ States → ( ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ≤ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) )
44 43 adantr ( ( 𝑆 ∈ States ∧ ( 𝑆𝐴 ) < 1 ) → ( ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) ≤ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) ∧ ( ( 𝑆𝐴 ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) ) )
45 33 37 44 mp2and ( ( 𝑆 ∈ States ∧ ( 𝑆𝐴 ) < 1 ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < ( 1 + ( 1 + 1 ) ) )
46 df-3 3 = ( 2 + 1 )
47 df-2 2 = ( 1 + 1 )
48 47 oveq1i ( 2 + 1 ) = ( ( 1 + 1 ) + 1 )
49 ax-1cn 1 ∈ ℂ
50 49 49 49 addassi ( ( 1 + 1 ) + 1 ) = ( 1 + ( 1 + 1 ) )
51 46 48 50 3eqtrri ( 1 + ( 1 + 1 ) ) = 3
52 45 51 breqtrdi ( ( 𝑆 ∈ States ∧ ( 𝑆𝐴 ) < 1 ) → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 )
53 52 ex ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) < 1 → ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 ) )
54 53 con3d ( 𝑆 ∈ States → ( ¬ ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) < 3 → ¬ ( 𝑆𝐴 ) < 1 ) )
55 stle1 ( 𝑆 ∈ States → ( 𝐴C → ( 𝑆𝐴 ) ≤ 1 ) )
56 1 55 mpi ( 𝑆 ∈ States → ( 𝑆𝐴 ) ≤ 1 )
57 leloe ( ( ( 𝑆𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆𝐴 ) ≤ 1 ↔ ( ( 𝑆𝐴 ) < 1 ∨ ( 𝑆𝐴 ) = 1 ) ) )
58 5 23 57 sylancl ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) ≤ 1 ↔ ( ( 𝑆𝐴 ) < 1 ∨ ( 𝑆𝐴 ) = 1 ) ) )
59 56 58 mpbid ( 𝑆 ∈ States → ( ( 𝑆𝐴 ) < 1 ∨ ( 𝑆𝐴 ) = 1 ) )
60 59 ord ( 𝑆 ∈ States → ( ¬ ( 𝑆𝐴 ) < 1 → ( 𝑆𝐴 ) = 1 ) )
61 22 54 60 3syld ( 𝑆 ∈ States → ( ( ( 𝑆𝐴 ) + ( ( 𝑆𝐵 ) + ( 𝑆𝐶 ) ) ) = 3 → ( 𝑆𝐴 ) = 1 ) )
62 14 61 sylbid ( 𝑆 ∈ States → ( ( ( ( 𝑆𝐴 ) + ( 𝑆𝐵 ) ) + ( 𝑆𝐶 ) ) = 3 → ( 𝑆𝐴 ) = 1 ) )