| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | stm1add3.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 5 | 1 4 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 8 | 2 7 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 10 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐶  ∈   Cℋ   →  ( 𝑆 ‘ 𝐶 )  ∈  ℝ ) ) | 
						
							| 11 | 3 10 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 13 | 6 9 12 | addassd | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑆  ∈  States  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  3  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  =  3 ) ) | 
						
							| 15 |  | eqcom | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  =  3  ↔  3  =  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) ) ) | 
						
							| 16 | 8 11 | readdcld | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) )  ∈  ℝ ) | 
						
							| 17 | 5 16 | readdcld | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ∈  ℝ ) | 
						
							| 18 |  | ltne | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ∈  ℝ  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3 )  →  3  ≠  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ∈  ℝ  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3  →  3  ≠  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) ) ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3  →  3  ≠  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) ) ) ) | 
						
							| 21 | 20 | necon2bd | ⊢ ( 𝑆  ∈  States  →  ( 3  =  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  →  ¬  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3 ) ) | 
						
							| 22 | 15 21 | biimtrid | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  =  3  →  ¬  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3 ) ) | 
						
							| 23 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 24 | 23 23 | readdcli | ⊢ ( 1  +  1 )  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑆  ∈  States  →  ( 1  +  1 )  ∈  ℝ ) | 
						
							| 26 |  | 1red | ⊢ ( 𝑆  ∈  States  →  1  ∈  ℝ ) | 
						
							| 27 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) ) | 
						
							| 28 | 2 27 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) | 
						
							| 29 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐶  ∈   Cℋ   →  ( 𝑆 ‘ 𝐶 )  ≤  1 ) ) | 
						
							| 30 | 3 29 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐶 )  ≤  1 ) | 
						
							| 31 | 8 11 26 26 28 30 | le2addd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) )  ≤  ( 1  +  1 ) ) | 
						
							| 32 | 16 25 5 31 | leadd2dd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) ) ) | 
						
							| 34 |  | ltadd1 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 1  +  1 )  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  <  1  ↔  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 1  +  1 )  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 36 | 5 26 25 35 | syl3anc | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) ) | 
						
							| 38 |  | readdcl | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  ( 1  +  1 )  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∈  ℝ ) | 
						
							| 39 | 5 24 38 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∈  ℝ ) | 
						
							| 40 | 23 24 | readdcli | ⊢ ( 1  +  ( 1  +  1 ) )  ∈  ℝ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑆  ∈  States  →  ( 1  +  ( 1  +  1 ) )  ∈  ℝ ) | 
						
							| 42 |  | lelttr | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ∈  ℝ  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∈  ℝ  ∧  ( 1  +  ( 1  +  1 ) )  ∈  ℝ )  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 43 | 17 39 41 42 | syl3anc | ⊢ ( 𝑆  ∈  States  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 1  +  1 ) )  <  ( 1  +  ( 1  +  1 ) ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  ( 1  +  ( 1  +  1 ) ) ) ) | 
						
							| 45 | 33 37 44 | mp2and | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  ( 1  +  ( 1  +  1 ) ) ) | 
						
							| 46 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 47 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 48 | 47 | oveq1i | ⊢ ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 ) | 
						
							| 49 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 50 | 49 49 49 | addassi | ⊢ ( ( 1  +  1 )  +  1 )  =  ( 1  +  ( 1  +  1 ) ) | 
						
							| 51 | 46 48 50 | 3eqtrri | ⊢ ( 1  +  ( 1  +  1 ) )  =  3 | 
						
							| 52 | 45 51 | breqtrdi | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3 ) | 
						
							| 53 | 52 | ex | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3 ) ) | 
						
							| 54 | 53 | con3d | ⊢ ( 𝑆  ∈  States  →  ( ¬  ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  <  3  →  ¬  ( 𝑆 ‘ 𝐴 )  <  1 ) ) | 
						
							| 55 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 56 | 1 55 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) | 
						
							| 57 |  | leloe | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ↔  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) ) | 
						
							| 58 | 5 23 57 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ↔  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) ) | 
						
							| 59 | 56 58 | mpbid | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 60 | 59 | ord | ⊢ ( 𝑆  ∈  States  →  ( ¬  ( 𝑆 ‘ 𝐴 )  <  1  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 61 | 22 54 60 | 3syld | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( ( 𝑆 ‘ 𝐵 )  +  ( 𝑆 ‘ 𝐶 ) ) )  =  3  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 62 | 14 61 | sylbid | ⊢ ( 𝑆  ∈  States  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  +  ( 𝑆 ‘ 𝐶 ) )  =  3  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) |