Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
|- A e. CH |
2 |
|
stle.2 |
|- B e. CH |
3 |
|
stm1add3.3 |
|- C e. CH |
4 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
5 |
1 4
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
6 |
5
|
recnd |
|- ( S e. States -> ( S ` A ) e. CC ) |
7 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
8 |
2 7
|
mpi |
|- ( S e. States -> ( S ` B ) e. RR ) |
9 |
8
|
recnd |
|- ( S e. States -> ( S ` B ) e. CC ) |
10 |
|
stcl |
|- ( S e. States -> ( C e. CH -> ( S ` C ) e. RR ) ) |
11 |
3 10
|
mpi |
|- ( S e. States -> ( S ` C ) e. RR ) |
12 |
11
|
recnd |
|- ( S e. States -> ( S ` C ) e. CC ) |
13 |
6 9 12
|
addassd |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
14 |
13
|
eqeq1d |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 <-> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 ) ) |
15 |
|
eqcom |
|- ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 <-> 3 = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
16 |
8 11
|
readdcld |
|- ( S e. States -> ( ( S ` B ) + ( S ` C ) ) e. RR ) |
17 |
5 16
|
readdcld |
|- ( S e. States -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR ) |
18 |
|
ltne |
|- ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR /\ ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
19 |
18
|
ex |
|- ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) ) |
20 |
17 19
|
syl |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) ) |
21 |
20
|
necon2bd |
|- ( S e. States -> ( 3 = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) -> -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
22 |
15 21
|
syl5bi |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 -> -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
23 |
|
1re |
|- 1 e. RR |
24 |
23 23
|
readdcli |
|- ( 1 + 1 ) e. RR |
25 |
24
|
a1i |
|- ( S e. States -> ( 1 + 1 ) e. RR ) |
26 |
|
1red |
|- ( S e. States -> 1 e. RR ) |
27 |
|
stle1 |
|- ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) |
28 |
2 27
|
mpi |
|- ( S e. States -> ( S ` B ) <_ 1 ) |
29 |
|
stle1 |
|- ( S e. States -> ( C e. CH -> ( S ` C ) <_ 1 ) ) |
30 |
3 29
|
mpi |
|- ( S e. States -> ( S ` C ) <_ 1 ) |
31 |
8 11 26 26 28 30
|
le2addd |
|- ( S e. States -> ( ( S ` B ) + ( S ` C ) ) <_ ( 1 + 1 ) ) |
32 |
16 25 5 31
|
leadd2dd |
|- ( S e. States -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) ) |
33 |
32
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) ) |
34 |
|
ltadd1 |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) < 1 <-> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
35 |
34
|
biimpd |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
36 |
5 26 25 35
|
syl3anc |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
37 |
36
|
imp |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) |
38 |
|
readdcl |
|- ( ( ( S ` A ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) + ( 1 + 1 ) ) e. RR ) |
39 |
5 24 38
|
sylancl |
|- ( S e. States -> ( ( S ` A ) + ( 1 + 1 ) ) e. RR ) |
40 |
23 24
|
readdcli |
|- ( 1 + ( 1 + 1 ) ) e. RR |
41 |
40
|
a1i |
|- ( S e. States -> ( 1 + ( 1 + 1 ) ) e. RR ) |
42 |
|
lelttr |
|- ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR /\ ( ( S ` A ) + ( 1 + 1 ) ) e. RR /\ ( 1 + ( 1 + 1 ) ) e. RR ) -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
43 |
17 39 41 42
|
syl3anc |
|- ( S e. States -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
44 |
43
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
45 |
33 37 44
|
mp2and |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) |
46 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
47 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
48 |
47
|
oveq1i |
|- ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
49 49 49
|
addassi |
|- ( ( 1 + 1 ) + 1 ) = ( 1 + ( 1 + 1 ) ) |
51 |
46 48 50
|
3eqtrri |
|- ( 1 + ( 1 + 1 ) ) = 3 |
52 |
45 51
|
breqtrdi |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) |
53 |
52
|
ex |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
54 |
53
|
con3d |
|- ( S e. States -> ( -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> -. ( S ` A ) < 1 ) ) |
55 |
|
stle1 |
|- ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) |
56 |
1 55
|
mpi |
|- ( S e. States -> ( S ` A ) <_ 1 ) |
57 |
|
leloe |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
58 |
5 23 57
|
sylancl |
|- ( S e. States -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
59 |
56 58
|
mpbid |
|- ( S e. States -> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) |
60 |
59
|
ord |
|- ( S e. States -> ( -. ( S ` A ) < 1 -> ( S ` A ) = 1 ) ) |
61 |
22 54 60
|
3syld |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 -> ( S ` A ) = 1 ) ) |
62 |
14 61
|
sylbid |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 -> ( S ` A ) = 1 ) ) |