Metamath Proof Explorer


Theorem st0

Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion st0
|- ( S e. States -> ( S ` 0H ) = 0 )

Proof

Step Hyp Ref Expression
1 helch
 |-  ~H e. CH
2 1 sto2i
 |-  ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - ( S ` ~H ) ) )
3 sthil
 |-  ( S e. States -> ( S ` ~H ) = 1 )
4 3 oveq2d
 |-  ( S e. States -> ( 1 - ( S ` ~H ) ) = ( 1 - 1 ) )
5 2 4 eqtrd
 |-  ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - 1 ) )
6 choc1
 |-  ( _|_ ` ~H ) = 0H
7 6 fveq2i
 |-  ( S ` ( _|_ ` ~H ) ) = ( S ` 0H )
8 1m1e0
 |-  ( 1 - 1 ) = 0
9 5 7 8 3eqtr3g
 |-  ( S e. States -> ( S ` 0H ) = 0 )