Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | st0 | |- ( S e. States -> ( S ` 0H ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | helch | |- ~H e. CH | |
| 2 | 1 | sto2i | |- ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - ( S ` ~H ) ) ) | 
| 3 | sthil | |- ( S e. States -> ( S ` ~H ) = 1 ) | |
| 4 | 3 | oveq2d | |- ( S e. States -> ( 1 - ( S ` ~H ) ) = ( 1 - 1 ) ) | 
| 5 | 2 4 | eqtrd | |- ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - 1 ) ) | 
| 6 | choc1 | |- ( _|_ ` ~H ) = 0H | |
| 7 | 6 | fveq2i | |- ( S ` ( _|_ ` ~H ) ) = ( S ` 0H ) | 
| 8 | 1m1e0 | |- ( 1 - 1 ) = 0 | |
| 9 | 5 7 8 | 3eqtr3g | |- ( S e. States -> ( S ` 0H ) = 0 ) |