Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | st0 | |- ( S e. States -> ( S ` 0H ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch | |- ~H e. CH |
|
2 | 1 | sto2i | |- ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - ( S ` ~H ) ) ) |
3 | sthil | |- ( S e. States -> ( S ` ~H ) = 1 ) |
|
4 | 3 | oveq2d | |- ( S e. States -> ( 1 - ( S ` ~H ) ) = ( 1 - 1 ) ) |
5 | 2 4 | eqtrd | |- ( S e. States -> ( S ` ( _|_ ` ~H ) ) = ( 1 - 1 ) ) |
6 | choc1 | |- ( _|_ ` ~H ) = 0H |
|
7 | 6 | fveq2i | |- ( S ` ( _|_ ` ~H ) ) = ( S ` 0H ) |
8 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
9 | 5 7 8 | 3eqtr3g | |- ( S e. States -> ( S ` 0H ) = 0 ) |