| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 |  |-  A e. CH | 
						
							| 2 | 1 | sto1i |  |-  ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) | 
						
							| 3 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 4 | 1 3 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( S e. States -> ( S ` A ) e. CC ) | 
						
							| 6 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 7 |  | stcl |  |-  ( S e. States -> ( ( _|_ ` A ) e. CH -> ( S ` ( _|_ ` A ) ) e. RR ) ) | 
						
							| 8 | 6 7 | mpi |  |-  ( S e. States -> ( S ` ( _|_ ` A ) ) e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( S e. States -> ( S ` ( _|_ ` A ) ) e. CC ) | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 |  | subadd |  |-  ( ( 1 e. CC /\ ( S ` A ) e. CC /\ ( S ` ( _|_ ` A ) ) e. CC ) -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) | 
						
							| 12 | 10 11 | mp3an1 |  |-  ( ( ( S ` A ) e. CC /\ ( S ` ( _|_ ` A ) ) e. CC ) -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) | 
						
							| 13 | 5 9 12 | syl2anc |  |-  ( S e. States -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) | 
						
							| 14 | 2 13 | mpbird |  |-  ( S e. States -> ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( S e. States -> ( S ` ( _|_ ` A ) ) = ( 1 - ( S ` A ) ) ) |