Metamath Proof Explorer


Theorem sto2i

Description: The state of the orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1 A C
Assertion sto2i S States S A = 1 S A

Proof

Step Hyp Ref Expression
1 sto1.1 A C
2 1 sto1i S States S A + S A = 1
3 stcl S States A C S A
4 1 3 mpi S States S A
5 4 recnd S States S A
6 1 choccli A C
7 stcl S States A C S A
8 6 7 mpi S States S A
9 8 recnd S States S A
10 ax-1cn 1
11 subadd 1 S A S A 1 S A = S A S A + S A = 1
12 10 11 mp3an1 S A S A 1 S A = S A S A + S A = 1
13 5 9 12 syl2anc S States 1 S A = S A S A + S A = 1
14 2 13 mpbird S States 1 S A = S A
15 14 eqcomd S States S A = 1 S A