Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | st0 | ⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 0ℋ ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch | ⊢ ℋ ∈ Cℋ | |
2 | 1 | sto2i | ⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 1 − ( 𝑆 ‘ ℋ ) ) ) |
3 | sthil | ⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ℋ ) = 1 ) | |
4 | 3 | oveq2d | ⊢ ( 𝑆 ∈ States → ( 1 − ( 𝑆 ‘ ℋ ) ) = ( 1 − 1 ) ) |
5 | 2 4 | eqtrd | ⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 1 − 1 ) ) |
6 | choc1 | ⊢ ( ⊥ ‘ ℋ ) = 0ℋ | |
7 | 6 | fveq2i | ⊢ ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 𝑆 ‘ 0ℋ ) |
8 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
9 | 5 7 8 | 3eqtr3g | ⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 0ℋ ) = 0 ) |