Metamath Proof Explorer


Theorem st0

Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion st0 ( 𝑆 ∈ States → ( 𝑆 ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 helch ℋ ∈ C
2 1 sto2i ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 1 − ( 𝑆 ‘ ℋ ) ) )
3 sthil ( 𝑆 ∈ States → ( 𝑆 ‘ ℋ ) = 1 )
4 3 oveq2d ( 𝑆 ∈ States → ( 1 − ( 𝑆 ‘ ℋ ) ) = ( 1 − 1 ) )
5 2 4 eqtrd ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 1 − 1 ) )
6 choc1 ( ⊥ ‘ ℋ ) = 0
7 6 fveq2i ( 𝑆 ‘ ( ⊥ ‘ ℋ ) ) = ( 𝑆 ‘ 0 )
8 1m1e0 ( 1 − 1 ) = 0
9 5 7 8 3eqtr3g ( 𝑆 ∈ States → ( 𝑆 ‘ 0 ) = 0 )