| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stle.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stle.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 4 | 1 3 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 6 | 2 5 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 7 | 4 6 | readdcld | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 8 |  | ltne | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 )  →  2  ≠  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 9 | 8 | necomd | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≠  2 ) | 
						
							| 10 | 7 9 | sylan | ⊢ ( ( 𝑆  ∈  States  ∧  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≠  2 ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≠  2 ) ) | 
						
							| 12 | 11 | necon2bd | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2  →  ¬  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 ) ) | 
						
							| 13 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑆  ∈  States  →  1  ∈  ℝ ) | 
						
							| 15 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) ) | 
						
							| 16 | 2 15 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐵 )  ≤  1 ) | 
						
							| 17 | 6 14 4 16 | leadd2dd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  1 ) ) | 
						
							| 19 |  | ltadd1 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  <  1  ↔  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) ) ) | 
						
							| 20 | 19 | biimpd | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) ) ) | 
						
							| 21 | 4 14 14 20 | syl3anc | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) ) | 
						
							| 23 |  | readdcl | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 24 | 4 13 23 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 25 | 13 13 | readdcli | ⊢ ( 1  +  1 )  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑆  ∈  States  →  ( 1  +  1 )  ∈  ℝ ) | 
						
							| 27 |  | lelttr | ⊢ ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∈  ℝ  ∧  ( 1  +  1 )  ∈  ℝ )  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  ( 1  +  1 ) ) ) | 
						
							| 28 | 7 24 26 27 | syl3anc | ⊢ ( 𝑆  ∈  States  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  ( 1  +  1 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  ≤  ( ( 𝑆 ‘ 𝐴 )  +  1 )  ∧  ( ( 𝑆 ‘ 𝐴 )  +  1 )  <  ( 1  +  1 ) )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  ( 1  +  1 ) ) ) | 
						
							| 30 | 18 22 29 | mp2and | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  ( 1  +  1 ) ) | 
						
							| 31 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 32 | 30 31 | breqtrrdi | ⊢ ( ( 𝑆  ∈  States  ∧  ( 𝑆 ‘ 𝐴 )  <  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2 ) ) | 
						
							| 34 | 33 | con3d | ⊢ ( 𝑆  ∈  States  →  ( ¬  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  <  2  →  ¬  ( 𝑆 ‘ 𝐴 )  <  1 ) ) | 
						
							| 35 |  | stle1 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 36 | 1 35 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ≤  1 ) | 
						
							| 37 |  | leloe | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ↔  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) ) | 
						
							| 38 | 4 13 37 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ≤  1  ↔  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) ) | 
						
							| 39 | 36 38 | mpbid | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  <  1  ∨  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 40 | 39 | ord | ⊢ ( 𝑆  ∈  States  →  ( ¬  ( 𝑆 ‘ 𝐴 )  <  1  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) | 
						
							| 41 | 12 34 40 | 3syld | ⊢ ( 𝑆  ∈  States  →  ( ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ 𝐵 ) )  =  2  →  ( 𝑆 ‘ 𝐴 )  =  1 ) ) |