Step |
Hyp |
Ref |
Expression |
1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) ) |
4 |
1 3
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) ) |
6 |
2 5
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ∈ ℝ ) |
7 |
4 6
|
readdcld |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ) |
8 |
|
ltne |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) → 2 ≠ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ) |
9 |
8
|
necomd |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≠ 2 ) |
10 |
7 9
|
sylan |
⊢ ( ( 𝑆 ∈ States ∧ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≠ 2 ) |
11 |
10
|
ex |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≠ 2 ) ) |
12 |
11
|
necon2bd |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 → ¬ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) ) |
13 |
|
1re |
⊢ 1 ∈ ℝ |
14 |
13
|
a1i |
⊢ ( 𝑆 ∈ States → 1 ∈ ℝ ) |
15 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) ≤ 1 ) ) |
16 |
2 15
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐵 ) ≤ 1 ) |
17 |
6 14 4 16
|
leadd2dd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) |
19 |
|
ltadd1 |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) < 1 ↔ ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) ) |
20 |
19
|
biimpd |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) ) |
21 |
4 14 14 20
|
syl3anc |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) |
23 |
|
readdcl |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
24 |
4 13 23
|
sylancl |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
25 |
13 13
|
readdcli |
⊢ ( 1 + 1 ) ∈ ℝ |
26 |
25
|
a1i |
⊢ ( 𝑆 ∈ States → ( 1 + 1 ) ∈ ℝ ) |
27 |
|
lelttr |
⊢ ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∧ ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < ( 1 + 1 ) ) ) |
28 |
7 24 26 27
|
syl3anc |
⊢ ( 𝑆 ∈ States → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∧ ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < ( 1 + 1 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) ≤ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ∧ ( ( 𝑆 ‘ 𝐴 ) + 1 ) < ( 1 + 1 ) ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < ( 1 + 1 ) ) ) |
30 |
18 22 29
|
mp2and |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < ( 1 + 1 ) ) |
31 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
32 |
30 31
|
breqtrrdi |
⊢ ( ( 𝑆 ∈ States ∧ ( 𝑆 ‘ 𝐴 ) < 1 ) → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) |
33 |
32
|
ex |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 ) ) |
34 |
33
|
con3d |
⊢ ( 𝑆 ∈ States → ( ¬ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) < 2 → ¬ ( 𝑆 ‘ 𝐴 ) < 1 ) ) |
35 |
|
stle1 |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ≤ 1 ) ) |
36 |
1 35
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ≤ 1 ) |
37 |
|
leloe |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑆 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) ) |
38 |
4 13 37
|
sylancl |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) ) |
39 |
36 38
|
mpbid |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) < 1 ∨ ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
40 |
39
|
ord |
⊢ ( 𝑆 ∈ States → ( ¬ ( 𝑆 ‘ 𝐴 ) < 1 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |
41 |
12 34 40
|
3syld |
⊢ ( 𝑆 ∈ States → ( ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ 𝐵 ) ) = 2 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) |