| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sto1.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | stge0 | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  0  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpi | ⊢ ( 𝑆  ∈  States  →  0  ≤  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 4 | 3 | anim2i | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ≤  0  ∧  𝑆  ∈  States )  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | expcom | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 6 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 7 | 1 6 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | letri3 | ⊢ ( ( ( 𝑆 ‘ 𝐴 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( 𝑆 ‘ 𝐴 )  =  0  ↔  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  =  0  ↔  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 5 10 | sylibrd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  →  ( 𝑆 ‘ 𝐴 )  =  0 ) ) | 
						
							| 12 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 13 |  | breq1 | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  0  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ↔  0  ≤  0 ) ) | 
						
							| 14 | 12 13 | mpbiri | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  0  →  ( 𝑆 ‘ 𝐴 )  ≤  0 ) | 
						
							| 15 | 11 14 | impbid1 | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  ≤  0  ↔  ( 𝑆 ‘ 𝐴 )  =  0 ) ) |