Metamath Proof Explorer


Theorem stcltr2i

Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
stcltr1.2 A C
Assertion stcltr2i φ S A = 1 A =

Proof

Step Hyp Ref Expression
1 stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
2 stcltr1.2 A C
3 ax-1 S A = 1 S = 1 S A = 1
4 helch C
5 1 4 2 stcltr1i φ S = 1 S A = 1 A
6 3 5 syl5 φ S A = 1 A
7 2 chssii A
8 eqss A = A A
9 7 8 mpbiran A = A
10 6 9 syl6ibr φ S A = 1 A =