Metamath Proof Explorer


Theorem stcltr1i

Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
stcltr1.2 A C
stcltr1.3 B C
Assertion stcltr1i φ S A = 1 S B = 1 A B

Proof

Step Hyp Ref Expression
1 stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
2 stcltr1.2 A C
3 stcltr1.3 B C
4 fveqeq2 x = A S x = 1 S A = 1
5 4 imbi1d x = A S x = 1 S y = 1 S A = 1 S y = 1
6 sseq1 x = A x y A y
7 5 6 imbi12d x = A S x = 1 S y = 1 x y S A = 1 S y = 1 A y
8 fveqeq2 y = B S y = 1 S B = 1
9 8 imbi2d y = B S A = 1 S y = 1 S A = 1 S B = 1
10 sseq2 y = B A y A B
11 9 10 imbi12d y = B S A = 1 S y = 1 A y S A = 1 S B = 1 A B
12 7 11 rspc2v A C B C x C y C S x = 1 S y = 1 x y S A = 1 S B = 1 A B
13 2 3 12 mp2an x C y C S x = 1 S y = 1 x y S A = 1 S B = 1 A B
14 1 13 simplbiim φ S A = 1 S B = 1 A B