Metamath Proof Explorer


Theorem stcltrlem2

Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 φSStatesxCyCSx=1Sy=1xy
stcltr1.2 AC
stcltrlem1.3 BC
Assertion stcltrlem2 φBAAB

Proof

Step Hyp Ref Expression
1 stcltr1.1 φSStatesxCyCSx=1Sy=1xy
2 stcltr1.2 AC
3 stcltrlem1.3 BC
4 1 2 3 stcltrlem1 φSB=1SAAB=1
5 2 choccli AC
6 2 3 chincli ABC
7 5 6 chjcli AABC
8 1 3 7 stcltr1i φSB=1SAAB=1BAAB
9 4 8 mpd φBAAB