Step |
Hyp |
Ref |
Expression |
1 |
|
stcltr1.1 |
⊢ ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( ( 𝑆 ‘ 𝑥 ) = 1 → ( 𝑆 ‘ 𝑦 ) = 1 ) → 𝑥 ⊆ 𝑦 ) ) ) |
2 |
|
stcltr1.2 |
⊢ 𝐴 ∈ Cℋ |
3 |
|
stcltrlem1.3 |
⊢ 𝐵 ∈ Cℋ |
4 |
1 2 3
|
stcltrlem1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) = 1 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = 1 ) ) |
5 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
6 |
2 3
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
7 |
5 6
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ∈ Cℋ |
8 |
1 3 7
|
stcltr1i |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) = 1 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = 1 ) → 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) ) |
9 |
4 8
|
mpd |
⊢ ( 𝜑 → 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |