Metamath Proof Explorer


Theorem stcltrlem2

Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥C𝑦C ( ( ( 𝑆𝑥 ) = 1 → ( 𝑆𝑦 ) = 1 ) → 𝑥𝑦 ) ) )
stcltr1.2 𝐴C
stcltrlem1.3 𝐵C
Assertion stcltrlem2 ( 𝜑𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 stcltr1.1 ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥C𝑦C ( ( ( 𝑆𝑥 ) = 1 → ( 𝑆𝑦 ) = 1 ) → 𝑥𝑦 ) ) )
2 stcltr1.2 𝐴C
3 stcltrlem1.3 𝐵C
4 1 2 3 stcltrlem1 ( 𝜑 → ( ( 𝑆𝐵 ) = 1 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) = 1 ) )
5 2 choccli ( ⊥ ‘ 𝐴 ) ∈ C
6 2 3 chincli ( 𝐴𝐵 ) ∈ C
7 5 6 chjcli ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ∈ C
8 1 3 7 stcltr1i ( 𝜑 → ( ( ( 𝑆𝐵 ) = 1 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) = 1 ) → 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) ) )
9 4 8 mpd ( 𝜑𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ ( 𝐴𝐵 ) ) )