| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stcltr1.1 |  |-  ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) | 
						
							| 2 |  | stcltr1.2 |  |-  A e. CH | 
						
							| 3 |  | stcltrlem1.3 |  |-  B e. CH | 
						
							| 4 | 1 | simplbi |  |-  ( ph -> S e. States ) | 
						
							| 5 | 2 3 | stji1i |  |-  ( S e. States -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) | 
						
							| 8 | 1 3 | stcltr2i |  |-  ( ph -> ( ( S ` B ) = 1 -> B = ~H ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> B = ~H ) | 
						
							| 10 |  | ineq2 |  |-  ( B = ~H -> ( A i^i B ) = ( A i^i ~H ) ) | 
						
							| 11 | 2 | chm1i |  |-  ( A i^i ~H ) = A | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( B = ~H -> ( A i^i B ) = A ) | 
						
							| 13 | 9 12 | syl |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( A i^i B ) = A ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( A i^i B ) ) = ( S ` A ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> S e. States ) | 
						
							| 17 | 2 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 18 |  | stcl |  |-  ( S e. States -> ( ( _|_ ` A ) e. CH -> ( S ` ( _|_ ` A ) ) e. RR ) ) | 
						
							| 19 | 17 18 | mpi |  |-  ( S e. States -> ( S ` ( _|_ ` A ) ) e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( S e. States -> ( S ` ( _|_ ` A ) ) e. CC ) | 
						
							| 21 |  | stcl |  |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) | 
						
							| 22 | 2 21 | mpi |  |-  ( S e. States -> ( S ` A ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( S e. States -> ( S ` A ) e. CC ) | 
						
							| 24 | 20 23 | addcomd |  |-  ( S e. States -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) ) | 
						
							| 25 | 2 | sto1i |  |-  ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) | 
						
							| 26 | 24 25 | eqtrd |  |-  ( S e. States -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = 1 ) | 
						
							| 27 | 16 26 | syl |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = 1 ) | 
						
							| 28 | 15 27 | eqtrd |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) = 1 ) | 
						
							| 29 | 7 28 | eqtrd |  |-  ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) | 
						
							| 30 | 29 | ex |  |-  ( ph -> ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) ) |