Step |
Hyp |
Ref |
Expression |
1 |
|
stcltr1.1 |
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) |
2 |
|
stcltr1.2 |
|- A e. CH |
3 |
|
stcltrlem1.3 |
|- B e. CH |
4 |
1
|
simplbi |
|- ( ph -> S e. States ) |
5 |
2 3
|
stji1i |
|- ( S e. States -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) |
6 |
4 5
|
syl |
|- ( ph -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) |
7 |
6
|
adantr |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) ) |
8 |
1 3
|
stcltr2i |
|- ( ph -> ( ( S ` B ) = 1 -> B = ~H ) ) |
9 |
8
|
imp |
|- ( ( ph /\ ( S ` B ) = 1 ) -> B = ~H ) |
10 |
|
ineq2 |
|- ( B = ~H -> ( A i^i B ) = ( A i^i ~H ) ) |
11 |
2
|
chm1i |
|- ( A i^i ~H ) = A |
12 |
10 11
|
eqtrdi |
|- ( B = ~H -> ( A i^i B ) = A ) |
13 |
9 12
|
syl |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( A i^i B ) = A ) |
14 |
13
|
fveq2d |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( A i^i B ) ) = ( S ` A ) ) |
15 |
14
|
oveq2d |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) = ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) ) |
16 |
4
|
adantr |
|- ( ( ph /\ ( S ` B ) = 1 ) -> S e. States ) |
17 |
2
|
choccli |
|- ( _|_ ` A ) e. CH |
18 |
|
stcl |
|- ( S e. States -> ( ( _|_ ` A ) e. CH -> ( S ` ( _|_ ` A ) ) e. RR ) ) |
19 |
17 18
|
mpi |
|- ( S e. States -> ( S ` ( _|_ ` A ) ) e. RR ) |
20 |
19
|
recnd |
|- ( S e. States -> ( S ` ( _|_ ` A ) ) e. CC ) |
21 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
22 |
2 21
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
23 |
22
|
recnd |
|- ( S e. States -> ( S ` A ) e. CC ) |
24 |
20 23
|
addcomd |
|- ( S e. States -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) ) |
25 |
2
|
sto1i |
|- ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) |
26 |
24 25
|
eqtrd |
|- ( S e. States -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = 1 ) |
27 |
16 26
|
syl |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` A ) ) = 1 ) |
28 |
15 27
|
eqtrd |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( ( S ` ( _|_ ` A ) ) + ( S ` ( A i^i B ) ) ) = 1 ) |
29 |
7 28
|
eqtrd |
|- ( ( ph /\ ( S ` B ) = 1 ) -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) |
30 |
29
|
ex |
|- ( ph -> ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) ) |