| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem9.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem9.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 |  | stirlinglem9.3 |  |-  J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) | 
						
							| 4 |  | stirlinglem9.4 |  |-  K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) | 
						
							| 5 |  | eqid |  |-  ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) | 
						
							| 6 | 3 4 5 | stirlinglem7 |  |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) | 
						
							| 7 | 1 2 3 | stirlinglem4 |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) | 
						
							| 8 | 6 7 | breqtrrd |  |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |