Metamath Proof Explorer


Theorem stirlinglem9

Description: ( ( BN ) - ( B( N + 1 ) ) ) is expressed as a limit of a series. This result will be used both to prove that B is decreasing and to prove that B is bounded (below). It will follow that B converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem9.1 A=nn!2nnen
stirlinglem9.2 B=nlogAn
stirlinglem9.3 J=n1+2n2logn+1n1
stirlinglem9.4 K=k12k+112 N+12k
Assertion stirlinglem9 Nseq1+KBNBN+1

Proof

Step Hyp Ref Expression
1 stirlinglem9.1 A=nn!2nnen
2 stirlinglem9.2 B=nlogAn
3 stirlinglem9.3 J=n1+2n2logn+1n1
4 stirlinglem9.4 K=k12k+112 N+12k
5 eqid k0212k+112 N+12k+1=k0212k+112 N+12k+1
6 3 4 5 stirlinglem7 Nseq1+KJN
7 1 2 3 stirlinglem4 NBNBN+1=JN
8 6 7 breqtrrd Nseq1+KBNBN+1