Metamath Proof Explorer


Theorem stirlinglem7

Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem7.1 J=n1+2n2logn+1n1
stirlinglem7.2 K=k12k+112 N+12k
stirlinglem7.3 H=k0212k+112 N+12k+1
Assertion stirlinglem7 Nseq1+KJN

Proof

Step Hyp Ref Expression
1 stirlinglem7.1 J=n1+2n2logn+1n1
2 stirlinglem7.2 K=k12k+112 N+12k
3 stirlinglem7.3 H=k0212k+112 N+12k+1
4 nnuz =1
5 1zzd N1
6 1e0p1 1=0+1
7 6 a1i N1=0+1
8 7 seqeq1d Nseq1+H=seq0+1+H
9 nn0uz 0=0
10 0nn0 00
11 10 a1i N00
12 oveq2 k=j2k=2j
13 12 oveq1d k=j2k+1=2j+1
14 13 oveq2d k=j12k+1=12j+1
15 13 oveq2d k=j12 N+12k+1=12 N+12j+1
16 14 15 oveq12d k=j12k+112 N+12k+1=12j+112 N+12j+1
17 16 oveq2d k=j212k+112 N+12k+1=212j+112 N+12j+1
18 simpr Nj0j0
19 2cnd Nj02
20 2cnd j02
21 nn0cn j0j
22 20 21 mulcld j02j
23 1cnd j01
24 22 23 addcld j02j+1
25 24 adantl Nj02j+1
26 0red j00
27 2re 2
28 27 a1i j02
29 nn0re j0j
30 28 29 remulcld j02j
31 1red j01
32 0le2 02
33 32 a1i j002
34 nn0ge0 j00j
35 28 29 33 34 mulge0d j002j
36 0lt1 0<1
37 36 a1i j00<1
38 30 31 35 37 addgegt0d j00<2j+1
39 26 38 ltned j002j+1
40 39 adantl Nj002j+1
41 40 necomd Nj02j+10
42 25 41 reccld Nj012j+1
43 nncn NN
44 43 adantr Nj0N
45 19 44 mulcld Nj02 N
46 1cnd Nj01
47 45 46 addcld Nj02 N+1
48 27 a1i N2
49 nnre NN
50 48 49 remulcld N2 N
51 1red N1
52 32 a1i N02
53 0red N0
54 nngt0 N0<N
55 53 49 54 ltled N0N
56 48 49 52 55 mulge0d N02 N
57 36 a1i N0<1
58 50 51 56 57 addgegt0d N0<2 N+1
59 58 gt0ne0d N2 N+10
60 59 adantr Nj02 N+10
61 47 60 reccld Nj012 N+1
62 2nn0 20
63 62 a1i Nj020
64 63 18 nn0mulcld Nj02j0
65 1nn0 10
66 65 a1i Nj010
67 64 66 nn0addcld Nj02j+10
68 61 67 expcld Nj012 N+12j+1
69 42 68 mulcld Nj012j+112 N+12j+1
70 19 69 mulcld Nj0212j+112 N+12j+1
71 3 17 18 70 fvmptd3 Nj0Hj=212j+112 N+12j+1
72 71 70 eqeltrd Nj0Hj
73 3 stirlinglem6 Nseq0+HlogN+1N
74 9 11 72 73 clim2ser Nseq0+1+HlogN+1Nseq0+H0
75 8 74 eqbrtrd Nseq1+HlogN+1Nseq0+H0
76 0z 0
77 seq1 0seq0+H0=H0
78 76 77 mp1i Nseq0+H0=H0
79 3 a1i NH=k0212k+112 N+12k+1
80 simpr Nk=0k=0
81 80 oveq2d Nk=02k=20
82 81 oveq1d Nk=02k+1=20+1
83 82 oveq2d Nk=012k+1=120+1
84 82 oveq2d Nk=012 N+12k+1=12 N+120+1
85 83 84 oveq12d Nk=012k+112 N+12k+1=120+112 N+120+1
86 85 oveq2d Nk=0212k+112 N+12k+1=2120+112 N+120+1
87 2cnd N2
88 0cnd N0
89 87 88 mulcld N20
90 1cnd N1
91 89 90 addcld N20+1
92 87 mul01d N20=0
93 92 eqcomd N0=20
94 93 oveq1d N0+1=20+1
95 7 94 eqtrd N1=20+1
96 57 95 breqtrd N0<20+1
97 96 gt0ne0d N20+10
98 91 97 reccld N120+1
99 87 43 mulcld N2 N
100 99 90 addcld N2 N+1
101 100 59 reccld N12 N+1
102 95 65 eqeltrrdi N20+10
103 101 102 expcld N12 N+120+1
104 98 103 mulcld N120+112 N+120+1
105 87 104 mulcld N2120+112 N+120+1
106 79 86 11 105 fvmptd NH0=2120+112 N+120+1
107 92 oveq1d N20+1=0+1
108 107 6 eqtr4di N20+1=1
109 108 oveq2d N120+1=11
110 90 div1d N11=1
111 109 110 eqtrd N120+1=1
112 108 oveq2d N12 N+120+1=12 N+11
113 101 exp1d N12 N+11=12 N+1
114 112 113 eqtrd N12 N+120+1=12 N+1
115 111 114 oveq12d N120+112 N+120+1=112 N+1
116 101 mullidd N112 N+1=12 N+1
117 115 116 eqtrd N120+112 N+120+1=12 N+1
118 117 oveq2d N2120+112 N+120+1=212 N+1
119 87 90 100 59 divassd N212 N+1=212 N+1
120 87 mulridd N21=2
121 120 oveq1d N212 N+1=22 N+1
122 118 119 121 3eqtr2d N2120+112 N+120+1=22 N+1
123 78 106 122 3eqtrd Nseq0+H0=22 N+1
124 123 oveq2d NlogN+1Nseq0+H0=logN+1N22 N+1
125 75 124 breqtrd Nseq1+HlogN+1N22 N+1
126 90 99 addcld N1+2 N
127 126 halfcld N1+2 N2
128 seqex seq1+KV
129 128 a1i Nseq1+KV
130 elnnuz jj1
131 130 biimpi jj1
132 131 adantl Njj1
133 oveq2 k=n2k=2n
134 133 oveq1d k=n2k+1=2n+1
135 134 oveq2d k=n12k+1=12n+1
136 134 oveq2d k=n12 N+12k+1=12 N+12n+1
137 135 136 oveq12d k=n12k+112 N+12k+1=12n+112 N+12n+1
138 137 oveq2d k=n212k+112 N+12k+1=212n+112 N+12n+1
139 elfzuz n1jn1
140 elnnuz nn1
141 140 biimpri n1n
142 nnnn0 nn0
143 139 141 142 3syl n1jn0
144 143 adantl Njn1jn0
145 2cnd Njn1j2
146 144 nn0cnd Njn1jn
147 145 146 mulcld Njn1j2n
148 1cnd Njn1j1
149 147 148 addcld Njn1j2n+1
150 elfznn n1jn
151 0red n0
152 1red n1
153 27 a1i n2
154 nnre nn
155 153 154 remulcld n2n
156 155 152 readdcld n2n+1
157 36 a1i n0<1
158 2rp 2+
159 158 a1i n2+
160 nnrp nn+
161 159 160 rpmulcld n2n+
162 152 161 ltaddrp2d n1<2n+1
163 151 152 156 157 162 lttrd n0<2n+1
164 163 gt0ne0d n2n+10
165 150 164 syl n1j2n+10
166 165 adantl Njn1j2n+10
167 149 166 reccld Njn1j12n+1
168 101 ad2antrr Njn1j12 N+1
169 62 a1i Njn1j20
170 169 144 nn0mulcld Njn1j2n0
171 65 a1i Njn1j10
172 170 171 nn0addcld Njn1j2n+10
173 168 172 expcld Njn1j12 N+12n+1
174 167 173 mulcld Njn1j12n+112 N+12n+1
175 145 174 mulcld Njn1j212n+112 N+12n+1
176 3 138 144 175 fvmptd3 Njn1jHn=212n+112 N+12n+1
177 176 175 eqeltrd Njn1jHn
178 addcl nin+i
179 178 adantl Njnin+i
180 132 177 179 seqcl Njseq1+Hj
181 1cnd Njni1
182 2cnd Njni2
183 43 ad2antrr NjniN
184 182 183 mulcld Njni2 N
185 181 184 addcld Njni1+2 N
186 185 halfcld Njni1+2 N2
187 simprl Njnin
188 simprr Njnii
189 186 187 188 adddid Njni1+2 N2n+i=1+2 N2n+1+2 N2i
190 133 oveq2d k=n12 N+12k=12 N+12n
191 135 190 oveq12d k=n12k+112 N+12k=12n+112 N+12n
192 150 adantl Njn1jn
193 168 170 expcld Njn1j12 N+12n
194 167 193 mulcld Njn1j12n+112 N+12n
195 2 191 192 194 fvmptd3 Njn1jKn=12n+112 N+12n
196 126 ad2antrr Njn1j1+2 N
197 2ne0 20
198 197 a1i Njn1j20
199 196 145 175 198 div32d Njn1j1+2 N2212n+112 N+12n+1=1+2 N212n+112 N+12n+12
200 174 145 198 divcan3d Njn1j212n+112 N+12n+12=12n+112 N+12n+1
201 200 oveq2d Njn1j1+2 N212n+112 N+12n+12=1+2 N12n+112 N+12n+1
202 196 167 173 mul12d Njn1j1+2 N12n+112 N+12n+1=12n+11+2 N12 N+12n+1
203 100 ad2antrr Njn1j2 N+1
204 59 ad2antrr Njn1j2 N+10
205 172 nn0zd Njn1j2n+1
206 203 204 205 exprecd Njn1j12 N+12n+1=12 N+12n+1
207 206 oveq2d Njn1j1+2 N12 N+12n+1=1+2 N12 N+12n+1
208 203 172 expcld Njn1j2 N+12n+1
209 203 204 205 expne0d Njn1j2 N+12n+10
210 196 208 209 divrecd Njn1j1+2 N2 N+12n+1=1+2 N12 N+12n+1
211 43 ad2antrr Njn1jN
212 145 211 mulcld Njn1j2 N
213 148 212 addcomd Njn1j1+2 N=2 N+1
214 203 170 expcld Njn1j2 N+12n
215 214 203 mulcomd Njn1j2 N+12n2 N+1=2 N+12 N+12n
216 213 215 oveq12d Njn1j1+2 N2 N+12n2 N+1=2 N+12 N+12 N+12n
217 203 170 expp1d Njn1j2 N+12n+1=2 N+12n2 N+1
218 217 oveq2d Njn1j1+2 N2 N+12n+1=1+2 N2 N+12n2 N+1
219 2z 2
220 219 a1i Njn1j2
221 144 nn0zd Njn1jn
222 220 221 zmulcld Njn1j2n
223 203 204 222 expne0d Njn1j2 N+12n0
224 203 203 214 204 223 divdiv1d Njn1j2 N+12 N+12 N+12n=2 N+12 N+12 N+12n
225 216 218 224 3eqtr4d Njn1j1+2 N2 N+12n+1=2 N+12 N+12 N+12n
226 207 210 225 3eqtr2d Njn1j1+2 N12 N+12n+1=2 N+12 N+12 N+12n
227 226 oveq2d Njn1j12n+11+2 N12 N+12n+1=12n+12 N+12 N+12 N+12n
228 203 204 dividd Njn1j2 N+12 N+1=1
229 1exp 2n12n=1
230 222 229 syl Njn1j12n=1
231 228 230 eqtr4d Njn1j2 N+12 N+1=12n
232 231 oveq1d Njn1j2 N+12 N+12 N+12n=12n2 N+12n
233 148 203 204 170 expdivd Njn1j12 N+12n=12n2 N+12n
234 232 233 eqtr4d Njn1j2 N+12 N+12 N+12n=12 N+12n
235 234 oveq2d Njn1j12n+12 N+12 N+12 N+12n=12n+112 N+12n
236 202 227 235 3eqtrd Njn1j1+2 N12n+112 N+12n+1=12n+112 N+12n
237 199 201 236 3eqtrd Njn1j1+2 N2212n+112 N+12n+1=12n+112 N+12n
238 176 eqcomd Njn1j212n+112 N+12n+1=Hn
239 238 oveq2d Njn1j1+2 N2212n+112 N+12n+1=1+2 N2Hn
240 195 237 239 3eqtr2d Njn1jKn=1+2 N2Hn
241 179 189 132 177 240 seqdistr Njseq1+Kj=1+2 N2seq1+Hj
242 4 5 125 127 129 180 241 climmulc2 Nseq1+K1+2 N2logN+1N22 N+1
243 90 99 addcomd N1+2 N=2 N+1
244 243 oveq1d N1+2 N2=2 N+12
245 244 oveq1d N1+2 N2logN+1N22 N+1=2 N+12logN+1N22 N+1
246 244 127 eqeltrrd N2 N+12
247 43 90 addcld NN+1
248 nnne0 NN0
249 247 43 248 divcld NN+1N
250 49 51 readdcld NN+1
251 49 ltp1d NN<N+1
252 53 49 250 54 251 lttrd N0<N+1
253 252 gt0ne0d NN+10
254 247 43 253 248 divne0d NN+1N0
255 249 254 logcld NlogN+1N
256 87 100 59 divcld N22 N+1
257 246 255 256 subdid N2 N+12logN+1N22 N+1=2 N+12logN+1N2 N+1222 N+1
258 99 90 addcomd N2 N+1=1+2 N
259 258 oveq1d N2 N+12=1+2 N2
260 259 oveq1d N2 N+12logN+1N=1+2 N2logN+1N
261 197 a1i N20
262 100 87 59 261 divcan6d N2 N+1222 N+1=1
263 260 262 oveq12d N2 N+12logN+1N2 N+1222 N+1=1+2 N2logN+1N1
264 245 257 263 3eqtrd N1+2 N2logN+1N22 N+1=1+2 N2logN+1N1
265 242 264 breqtrd Nseq1+K1+2 N2logN+1N1
266 oveq2 n=N2n=2 N
267 266 oveq2d n=N1+2n=1+2 N
268 267 oveq1d n=N1+2n2=1+2 N2
269 oveq1 n=Nn+1=N+1
270 id n=Nn=N
271 269 270 oveq12d n=Nn+1n=N+1N
272 271 fveq2d n=Nlogn+1n=logN+1N
273 268 272 oveq12d n=N1+2n2logn+1n=1+2 N2logN+1N
274 273 oveq1d n=N1+2n2logn+1n1=1+2 N2logN+1N1
275 id NN
276 127 255 mulcld N1+2 N2logN+1N
277 276 90 subcld N1+2 N2logN+1N1
278 1 274 275 277 fvmptd3 NJN=1+2 N2logN+1N1
279 265 278 breqtrrd Nseq1+KJN