| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem7.1 | ⊢ 𝐽  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  1 ) ) | 
						
							| 2 |  | stirlinglem7.2 | ⊢ 𝐾  =  ( 𝑘  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) ) ) | 
						
							| 3 |  | stirlinglem7.3 | ⊢ 𝐻  =  ( 𝑘  ∈  ℕ0  ↦  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | 1zzd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 6 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  =  ( 0  +  1 ) ) | 
						
							| 8 | 7 | seqeq1d | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐻 )  =  seq ( 0  +  1 ) (  +  ,  𝐻 ) ) | 
						
							| 9 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 10 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℕ0 ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑗 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 15 | 13 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 16 | 14 15 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 19 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 20 |  | 2cnd | ⊢ ( 𝑗  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 21 |  | nn0cn | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℂ ) | 
						
							| 22 | 20 21 | mulcld | ⊢ ( 𝑗  ∈  ℕ0  →  ( 2  ·  𝑗 )  ∈  ℂ ) | 
						
							| 23 |  | 1cnd | ⊢ ( 𝑗  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 24 | 22 23 | addcld | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℂ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℂ ) | 
						
							| 26 |  | 0red | ⊢ ( 𝑗  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 27 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑗  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 29 |  | nn0re | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℝ ) | 
						
							| 30 | 28 29 | remulcld | ⊢ ( 𝑗  ∈  ℕ0  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 31 |  | 1red | ⊢ ( 𝑗  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 32 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑗  ∈  ℕ0  →  0  ≤  2 ) | 
						
							| 34 |  | nn0ge0 | ⊢ ( 𝑗  ∈  ℕ0  →  0  ≤  𝑗 ) | 
						
							| 35 | 28 29 33 34 | mulge0d | ⊢ ( 𝑗  ∈  ℕ0  →  0  ≤  ( 2  ·  𝑗 ) ) | 
						
							| 36 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 37 | 36 | a1i | ⊢ ( 𝑗  ∈  ℕ0  →  0  <  1 ) | 
						
							| 38 | 30 31 35 37 | addgegt0d | ⊢ ( 𝑗  ∈  ℕ0  →  0  <  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 39 | 26 38 | ltned | ⊢ ( 𝑗  ∈  ℕ0  →  0  ≠  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  0  ≠  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 41 | 40 | necomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  0 ) | 
						
							| 42 | 25 41 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℂ ) | 
						
							| 43 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 45 | 19 44 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 46 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 47 | 45 46 | addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℂ ) | 
						
							| 48 | 27 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 49 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 50 | 48 49 | remulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 51 |  | 1red | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 52 | 32 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  2 ) | 
						
							| 53 |  | 0red | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 54 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 55 | 53 49 54 | ltled | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  𝑁 ) | 
						
							| 56 | 48 49 52 55 | mulge0d | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 57 | 36 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  1 ) | 
						
							| 58 | 50 51 56 57 | addgegt0d | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 59 | 58 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 61 | 47 60 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 62 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 63 | 62 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  2  ∈  ℕ0 ) | 
						
							| 64 | 63 18 | nn0mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 2  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 65 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 66 | 65 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  1  ∈  ℕ0 ) | 
						
							| 67 | 64 66 | nn0addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ0 ) | 
						
							| 68 | 61 67 | expcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℂ ) | 
						
							| 69 | 42 68 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 70 | 19 69 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 71 | 3 17 18 70 | fvmptd3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑗 )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) ) ) | 
						
							| 72 | 71 70 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 73 | 3 | stirlinglem6 | ⊢ ( 𝑁  ∈  ℕ  →  seq 0 (  +  ,  𝐻 )  ⇝  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) ) | 
						
							| 74 | 9 11 72 73 | clim2ser | ⊢ ( 𝑁  ∈  ℕ  →  seq ( 0  +  1 ) (  +  ,  𝐻 )  ⇝  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 0 ) ) ) | 
						
							| 75 | 8 74 | eqbrtrd | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐻 )  ⇝  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 0 ) ) ) | 
						
							| 76 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 77 |  | seq1 | ⊢ ( 0  ∈  ℤ  →  ( seq 0 (  +  ,  𝐻 ) ‘ 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 78 | 76 77 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  ( seq 0 (  +  ,  𝐻 ) ‘ 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 79 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  𝐻  =  ( 𝑘  ∈  ℕ0  ↦  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  𝑘  =  0 ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( 2  ·  𝑘 )  =  ( 2  ·  0 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  0 )  +  1 ) ) ) | 
						
							| 84 | 82 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) | 
						
							| 85 | 83 84 | oveq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  0 )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) ) ) | 
						
							| 87 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 88 |  | 0cnd | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℂ ) | 
						
							| 89 | 87 88 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  0 )  ∈  ℂ ) | 
						
							| 90 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 91 | 89 90 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  0 )  +  1 )  ∈  ℂ ) | 
						
							| 92 | 87 | mul01d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  0 )  =  0 ) | 
						
							| 93 | 92 | eqcomd | ⊢ ( 𝑁  ∈  ℕ  →  0  =  ( 2  ·  0 ) ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  +  1 )  =  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 95 | 7 94 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  1  =  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 96 | 57 95 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 97 | 96 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  0 )  +  1 )  ≠  0 ) | 
						
							| 98 | 91 97 | reccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ∈  ℂ ) | 
						
							| 99 | 87 43 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 100 | 99 90 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℂ ) | 
						
							| 101 | 100 59 | reccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 102 | 95 65 | eqeltrrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  0 )  +  1 )  ∈  ℕ0 ) | 
						
							| 103 | 101 102 | expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) )  ∈  ℂ ) | 
						
							| 104 | 98 103 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 105 | 87 104 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 106 | 79 86 11 105 | fvmptd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐻 ‘ 0 )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) ) ) | 
						
							| 107 | 92 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  0 )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 108 | 107 6 | eqtr4di | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  0 )  +  1 )  =  1 ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  0 )  +  1 ) )  =  ( 1  /  1 ) ) | 
						
							| 110 | 90 | div1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  1 )  =  1 ) | 
						
							| 111 | 109 110 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  0 )  +  1 ) )  =  1 ) | 
						
							| 112 | 108 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ 1 ) ) | 
						
							| 113 | 101 | exp1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ 1 )  =  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 114 | 112 113 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 115 | 111 114 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) )  =  ( 1  ·  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 116 | 101 | mullidd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ·  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) )  =  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 117 | 115 116 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) )  =  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) )  =  ( 2  ·  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 119 | 87 90 100 59 | divassd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  =  ( 2  ·  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 120 | 87 | mulridd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  1 )  =  2 ) | 
						
							| 121 | 120 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  =  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 122 | 118 119 121 | 3eqtr2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  0 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  0 )  +  1 ) ) ) )  =  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 123 | 78 106 122 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( seq 0 (  +  ,  𝐻 ) ‘ 0 )  =  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 0 ) )  =  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 125 | 75 124 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐻 )  ⇝  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 126 | 90 99 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  +  ( 2  ·  𝑁 ) )  ∈  ℂ ) | 
						
							| 127 | 126 | halfcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ∈  ℂ ) | 
						
							| 128 |  | seqex | ⊢ seq 1 (  +  ,  𝐾 )  ∈  V | 
						
							| 129 | 128 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐾 )  ∈  V ) | 
						
							| 130 |  | elnnuz | ⊢ ( 𝑗  ∈  ℕ  ↔  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 131 | 130 | biimpi | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 133 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 134 | 133 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 135 | 134 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 136 | 134 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 137 | 135 136 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 139 |  | elfzuz | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 140 |  | elnnuz | ⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 141 | 140 | biimpri | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  𝑛  ∈  ℕ ) | 
						
							| 142 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 143 | 139 141 142 | 3syl | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 145 |  | 2cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  2  ∈  ℂ ) | 
						
							| 146 | 144 | nn0cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 147 | 145 146 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 148 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  1  ∈  ℂ ) | 
						
							| 149 | 147 148 | addcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 150 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  𝑛  ∈  ℕ ) | 
						
							| 151 |  | 0red | ⊢ ( 𝑛  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 152 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 153 | 27 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 154 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 155 | 153 154 | remulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℝ ) | 
						
							| 156 | 155 152 | readdcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℝ ) | 
						
							| 157 | 36 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  0  <  1 ) | 
						
							| 158 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 159 | 158 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 160 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 161 | 159 160 | rpmulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℝ+ ) | 
						
							| 162 | 152 161 | ltaddrp2d | ⊢ ( 𝑛  ∈  ℕ  →  1  <  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 163 | 151 152 156 157 162 | lttrd | ⊢ ( 𝑛  ∈  ℕ  →  0  <  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 164 | 163 | gt0ne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 165 | 150 164 | syl | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  ( ( 2  ·  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 166 | 165 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 167 | 149 166 | reccld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 168 | 101 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 169 | 62 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  2  ∈  ℕ0 ) | 
						
							| 170 | 169 144 | nn0mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 171 | 65 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  1  ∈  ℕ0 ) | 
						
							| 172 | 170 171 | nn0addcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0 ) | 
						
							| 173 | 168 172 | expcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 174 | 167 173 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 175 | 145 174 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 176 | 3 138 144 175 | fvmptd3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐻 ‘ 𝑛 )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 177 | 176 175 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐻 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 178 |  | addcl | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ )  →  ( 𝑛  +  𝑖 )  ∈  ℂ ) | 
						
							| 179 | 178 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( 𝑛  +  𝑖 )  ∈  ℂ ) | 
						
							| 180 | 132 177 179 | seqcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 181 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  1  ∈  ℂ ) | 
						
							| 182 |  | 2cnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  2  ∈  ℂ ) | 
						
							| 183 | 43 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 184 | 182 183 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 185 | 181 184 | addcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( 1  +  ( 2  ·  𝑁 ) )  ∈  ℂ ) | 
						
							| 186 | 185 | halfcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ∈  ℂ ) | 
						
							| 187 |  | simprl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  𝑛  ∈  ℂ ) | 
						
							| 188 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  𝑖  ∈  ℂ ) | 
						
							| 189 | 186 187 188 | adddid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 𝑛  +  𝑖 ) )  =  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  𝑛 )  +  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  𝑖 ) ) ) | 
						
							| 190 | 133 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 191 | 135 190 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 192 | 150 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 193 | 168 170 | expcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 194 | 167 193 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 195 | 2 191 192 194 | fvmptd3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 196 | 126 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 1  +  ( 2  ·  𝑁 ) )  ∈  ℂ ) | 
						
							| 197 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 198 | 197 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  2  ≠  0 ) | 
						
							| 199 | 196 145 175 198 | div32d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  /  2 ) ) ) | 
						
							| 200 | 174 145 198 | divcan3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  /  2 )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 201 | 200 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  /  2 ) )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 202 | 196 167 173 | mul12d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 203 | 100 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℂ ) | 
						
							| 204 | 59 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 205 | 172 | nn0zd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℤ ) | 
						
							| 206 | 203 204 205 | exprecd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 1  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 207 | 206 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( 1  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 208 | 203 172 | expcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 209 | 203 204 205 | expne0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) )  ≠  0 ) | 
						
							| 210 | 196 208 209 | divrecd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( 1  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 211 | 43 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 212 | 145 211 | mulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 213 | 148 212 | addcomd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 1  +  ( 2  ·  𝑁 ) )  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 214 | 203 170 | expcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 215 | 214 203 | mulcomd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ·  ( ( 2  ·  𝑁 )  +  1 ) )  =  ( ( ( 2  ·  𝑁 )  +  1 )  ·  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 216 | 213 215 | oveq12d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  ( ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ·  ( ( 2  ·  𝑁 )  +  1 ) ) )  =  ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( ( 2  ·  𝑁 )  +  1 )  ·  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) ) | 
						
							| 217 | 203 170 | expp1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ·  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 218 | 217 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  /  ( ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ·  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) | 
						
							| 219 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 220 | 219 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  2  ∈  ℤ ) | 
						
							| 221 | 144 | nn0zd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 222 | 220 221 | zmulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 223 | 203 204 222 | expne0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) )  ≠  0 ) | 
						
							| 224 | 203 203 214 204 223 | divdiv1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) )  =  ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( ( 2  ·  𝑁 )  +  1 )  ·  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) ) | 
						
							| 225 | 216 218 224 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 226 | 207 210 225 | 3eqtr2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 227 | 226 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) ) | 
						
							| 228 | 203 204 | dividd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  =  1 ) | 
						
							| 229 |  | 1exp | ⊢ ( ( 2  ·  𝑛 )  ∈  ℤ  →  ( 1 ↑ ( 2  ·  𝑛 ) )  =  1 ) | 
						
							| 230 | 222 229 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 1 ↑ ( 2  ·  𝑛 ) )  =  1 ) | 
						
							| 231 | 228 230 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  =  ( 1 ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 232 | 231 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) )  =  ( ( 1 ↑ ( 2  ·  𝑛 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 233 | 148 203 204 170 | expdivd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) )  =  ( ( 1 ↑ ( 2  ·  𝑛 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 234 | 232 233 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 235 | 234 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  ( ( 2  ·  𝑁 )  +  1 ) )  /  ( ( ( 2  ·  𝑁 )  +  1 ) ↑ ( 2  ·  𝑛 ) ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 236 | 202 227 235 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( 1  +  ( 2  ·  𝑁 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 237 | 199 201 236 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑛 ) ) ) ) | 
						
							| 238 | 176 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 239 | 238 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) )  =  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 𝐻 ‘ 𝑛 ) ) ) | 
						
							| 240 | 195 237 239 | 3eqtr2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( 𝐻 ‘ 𝑛 ) ) ) | 
						
							| 241 | 179 189 132 177 240 | seqdistr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐾 ) ‘ 𝑗 )  =  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑗 ) ) ) | 
						
							| 242 | 4 5 125 127 129 180 241 | climmulc2 | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐾 )  ⇝  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) ) | 
						
							| 243 | 90 99 | addcomd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  +  ( 2  ·  𝑁 ) )  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 244 | 243 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  =  ( ( ( 2  ·  𝑁 )  +  1 )  /  2 ) ) | 
						
							| 245 | 244 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) )  =  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) ) | 
						
							| 246 | 244 127 | eqeltrrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ∈  ℂ ) | 
						
							| 247 | 43 90 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℂ ) | 
						
							| 248 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 249 | 247 43 248 | divcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  /  𝑁 )  ∈  ℂ ) | 
						
							| 250 | 49 51 | readdcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 251 | 49 | ltp1d | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 252 | 53 49 250 54 251 | lttrd | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 253 | 252 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ≠  0 ) | 
						
							| 254 | 247 43 253 248 | divne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  /  𝑁 )  ≠  0 ) | 
						
							| 255 | 249 254 | logcld | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 256 | 87 100 59 | divcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 257 | 246 255 256 | subdid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) )  =  ( ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) ) ) | 
						
							| 258 | 99 90 | addcomd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  =  ( 1  +  ( 2  ·  𝑁 ) ) ) | 
						
							| 259 | 258 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 ) ) | 
						
							| 260 | 259 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  =  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 261 | 197 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 262 | 100 87 59 261 | divcan6d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) )  =  1 ) | 
						
							| 263 | 260 262 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  ( ( ( ( 2  ·  𝑁 )  +  1 )  /  2 )  ·  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 ) ) | 
						
							| 264 | 245 257 263 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) )  −  ( 2  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 ) ) | 
						
							| 265 | 242 264 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐾 )  ⇝  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 ) ) | 
						
							| 266 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑁 ) ) | 
						
							| 267 | 266 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( 1  +  ( 2  ·  𝑛 ) )  =  ( 1  +  ( 2  ·  𝑁 ) ) ) | 
						
							| 268 | 267 | oveq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  =  ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 ) ) | 
						
							| 269 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 270 |  | id | ⊢ ( 𝑛  =  𝑁  →  𝑛  =  𝑁 ) | 
						
							| 271 | 269 270 | oveq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  +  1 )  /  𝑛 )  =  ( ( 𝑁  +  1 )  /  𝑁 ) ) | 
						
							| 272 | 271 | fveq2d | ⊢ ( 𝑛  =  𝑁  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  =  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) ) | 
						
							| 273 | 268 272 | oveq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 274 | 273 | oveq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  1 )  =  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 ) ) | 
						
							| 275 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 276 | 127 255 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  ∈  ℂ ) | 
						
							| 277 | 276 90 | subcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 )  ∈  ℂ ) | 
						
							| 278 | 1 274 275 277 | fvmptd3 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐽 ‘ 𝑁 )  =  ( ( ( ( 1  +  ( 2  ·  𝑁 ) )  /  2 )  ·  ( log ‘ ( ( 𝑁  +  1 )  /  𝑁 ) ) )  −  1 ) ) | 
						
							| 279 | 265 278 | breqtrrd | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐾 )  ⇝  ( 𝐽 ‘ 𝑁 ) ) |