| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem8.1 | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | stirlinglem8.2 | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 3 |  | stirlinglem8.3 | ⊢ Ⅎ 𝑛 𝐷 | 
						
							| 4 |  | stirlinglem8.4 | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ) | 
						
							| 5 |  | stirlinglem8.5 | ⊢ ( 𝜑  →  𝐴 : ℕ ⟶ ℝ+ ) | 
						
							| 6 |  | stirlinglem8.6 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 7 |  | stirlinglem8.7 | ⊢ 𝐿  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 8 |  | stirlinglem8.8 | ⊢ 𝑀  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 9 |  | stirlinglem8.9 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ∈  ℝ+ ) | 
						
							| 10 |  | stirlinglem8.10 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 11 |  | stirlinglem8.11 | ⊢ ( 𝜑  →  𝐴  ⇝  𝐶 ) | 
						
							| 12 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 13 | 7 12 | nfcxfr | ⊢ Ⅎ 𝑛 𝐿 | 
						
							| 14 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 15 | 8 14 | nfcxfr | ⊢ Ⅎ 𝑛 𝑀 | 
						
							| 16 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 17 | 6 16 | nfcxfr | ⊢ Ⅎ 𝑛 𝐹 | 
						
							| 18 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 19 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 20 |  | rrpsscn | ⊢ ℝ+  ⊆  ℂ | 
						
							| 21 |  | fss | ⊢ ( ( 𝐴 : ℕ ⟶ ℝ+  ∧  ℝ+  ⊆  ℂ )  →  𝐴 : ℕ ⟶ ℂ ) | 
						
							| 22 | 5 20 21 | sylancl | ⊢ ( 𝜑  →  𝐴 : ℕ ⟶ ℂ ) | 
						
							| 23 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  4  ∈  ℕ0 ) | 
						
							| 25 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 26 | 25 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) )  ∈  V | 
						
							| 27 | 7 26 | eqeltri | ⊢ 𝐿  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 30 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 32 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  4  ∈  ℕ0 ) | 
						
							| 33 | 31 32 | expcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  ∈  ℂ ) | 
						
							| 34 | 7 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  ∈  ℂ )  →  ( 𝐿 ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 35 | 29 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐿 ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 36 | 1 2 13 18 19 22 11 24 28 35 | climexp | ⊢ ( 𝜑  →  𝐿  ⇝  ( 𝐶 ↑ 4 ) ) | 
						
							| 37 | 25 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) )  ∈  V | 
						
							| 38 | 6 37 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 40 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴 : ℕ ⟶ ℂ ) | 
						
							| 41 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 42 | 41 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 43 |  | id | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ ) | 
						
							| 44 | 42 43 | nnmulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 46 | 40 45 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 47 | 1 46 4 | fmptdf | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ ℂ ) | 
						
							| 48 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) | 
						
							| 49 |  | fex | ⊢ ( ( 𝐴 : ℕ ⟶ ℂ  ∧  ℕ  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 50 | 22 25 49 | sylancl | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 51 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 52 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 53 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 54 | 52 53 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  1 )  ∈  ℂ ) | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 2  ·  𝑛 )  =  ( 2  ·  1 ) ) | 
						
							| 56 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) | 
						
							| 57 | 55 56 | fvmptg | ⊢ ( ( 1  ∈  ℕ  ∧  ( 2  ·  1 )  ∈  ℂ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 1 )  =  ( 2  ·  1 ) ) | 
						
							| 58 | 51 54 57 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 1 )  =  ( 2  ·  1 ) ) | 
						
							| 59 | 41 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 60 | 51 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 61 | 59 60 | nnmulcld | ⊢ ( 𝜑  →  ( 2  ·  1 )  ∈  ℕ ) | 
						
							| 62 | 58 61 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 1 )  ∈  ℕ ) | 
						
							| 63 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 64 | 42 | nnred | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 65 | 44 | nnred | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℝ ) | 
						
							| 66 | 42 | nnge1d | ⊢ ( 𝑛  ∈  ℕ  →  1  ≤  2 ) | 
						
							| 67 | 63 64 65 66 | leadd2dd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  1 )  ≤  ( ( 2  ·  𝑛 )  +  2 ) ) | 
						
							| 68 | 56 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 2  ·  𝑛 )  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 69 | 44 68 | mpdan | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 72 | 71 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( 2  ·  𝑘 ) ) | 
						
							| 73 | 72 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( 2  ·  𝑘 ) ) ) | 
						
							| 74 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  𝑘  =  ( 𝑛  +  1 ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  =  ( 𝑛  +  1 ) )  →  ( 2  ·  𝑘 )  =  ( 2  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 76 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 77 | 42 76 | nnmulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 78 | 73 75 76 77 | fvmptd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 2  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 79 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 80 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 81 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 82 | 79 80 81 | adddid | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( 𝑛  +  1 ) )  =  ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) ) ) | 
						
							| 83 | 79 | mulridd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  1 )  =  2 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) )  =  ( ( 2  ·  𝑛 )  +  2 ) ) | 
						
							| 85 | 78 82 84 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( 2  ·  𝑛 )  +  2 ) ) | 
						
							| 86 | 67 70 85 | 3brtr4d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 87 | 44 | nnzd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 88 | 69 87 | eqeltrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 89 | 88 | peano2zd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  ∈  ℤ ) | 
						
							| 90 | 77 | nnzd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 91 | 78 90 | eqeltrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 92 |  | eluz | ⊢ ( ( ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  ∈  ℤ  ∧  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ℤ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 ) )  ↔  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 93 | 89 91 92 | syl2anc | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 ) )  ↔  ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 94 | 86 93 | mpbird | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 ) ) ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ ( 𝑛  +  1 ) )  ∈  ( ℤ≥ ‘ ( ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  +  1 ) ) ) | 
						
							| 96 | 25 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝐴 ‘ ( 2  ·  𝑛 ) ) )  ∈  V | 
						
							| 97 | 4 96 | eqeltri | ⊢ 𝐷  ∈  V | 
						
							| 98 | 97 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 99 | 4 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝐴 ‘ ( 2  ·  𝑛 ) )  ∈  ℂ )  →  ( 𝐷 ‘ 𝑛 )  =  ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ) | 
						
							| 100 | 29 46 99 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ) | 
						
							| 101 | 69 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  =  ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ ( 2  ·  𝑛 ) )  =  ( 𝐴 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 ) ) ) | 
						
							| 104 | 100 103 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  ( 𝐴 ‘ ( ( 𝑛  ∈  ℕ  ↦  ( 2  ·  𝑛 ) ) ‘ 𝑛 ) ) ) | 
						
							| 105 | 1 2 3 48 18 19 50 31 11 62 95 98 104 | climsuse | ⊢ ( 𝜑  →  𝐷  ⇝  𝐶 ) | 
						
							| 106 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 107 | 106 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 108 | 25 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) )  ∈  V | 
						
							| 109 | 8 108 | eqeltri | ⊢ 𝑀  ∈  V | 
						
							| 110 | 109 | a1i | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 111 | 9 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 112 | 111 | sqcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 113 | 8 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 )  ∈  ℂ )  →  ( 𝑀 ‘ 𝑛 )  =  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 114 | 29 112 113 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  =  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 115 | 1 3 15 18 19 47 105 107 110 114 | climexp | ⊢ ( 𝜑  →  𝑀  ⇝  ( 𝐶 ↑ 2 ) ) | 
						
							| 116 | 10 | rpcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 117 | 10 | rpne0d | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 118 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 119 | 118 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 120 | 116 117 119 | expne0d | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ≠  0 ) | 
						
							| 121 | 1 33 7 | fmptdf | ⊢ ( 𝜑  →  𝐿 : ℕ ⟶ ℂ ) | 
						
							| 122 | 121 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐿 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 123 | 114 112 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 124 | 100 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 )  =  ( ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ↑ 2 ) ) | 
						
							| 125 | 114 124 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  =  ( ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ↑ 2 ) ) | 
						
							| 126 | 100 9 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ ( 2  ·  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 127 | 118 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  2  ∈  ℤ ) | 
						
							| 128 | 126 127 | rpexpcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 ‘ ( 2  ·  𝑛 ) ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 129 | 125 128 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  ∈  ℝ+ ) | 
						
							| 130 | 129 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  ≠  0 ) | 
						
							| 131 | 130 | neneqd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ¬  ( 𝑀 ‘ 𝑛 )  =  0 ) | 
						
							| 132 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 133 |  | elsn2g | ⊢ ( 0  ∈  ℂ  →  ( ( 𝑀 ‘ 𝑛 )  ∈  { 0 }  ↔  ( 𝑀 ‘ 𝑛 )  =  0 ) ) | 
						
							| 134 | 132 133 | ax-mp | ⊢ ( ( 𝑀 ‘ 𝑛 )  ∈  { 0 }  ↔  ( 𝑀 ‘ 𝑛 )  =  0 ) | 
						
							| 135 | 131 134 | sylnibr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ¬  ( 𝑀 ‘ 𝑛 )  ∈  { 0 } ) | 
						
							| 136 | 123 135 | eldifd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ 𝑛 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 137 | 32 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  4  ∈  ℤ ) | 
						
							| 138 | 30 137 | rpexpcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  ∈  ℝ+ ) | 
						
							| 139 | 9 127 | rpexpcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 140 | 138 139 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 141 | 6 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) )  ∈  ℝ+ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 142 | 29 140 141 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 143 | 7 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  ∈  ℝ+ )  →  ( 𝐿 ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 144 | 29 138 143 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐿 ‘ 𝑛 )  =  ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | 
						
							| 145 | 144 114 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐿 ‘ 𝑛 )  /  ( 𝑀 ‘ 𝑛 ) )  =  ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 )  /  ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 146 | 142 145 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐿 ‘ 𝑛 )  /  ( 𝑀 ‘ 𝑛 ) ) ) | 
						
							| 147 | 1 13 15 17 18 19 36 39 115 120 122 136 146 | climdivf | ⊢ ( 𝜑  →  𝐹  ⇝  ( ( 𝐶 ↑ 4 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 148 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 149 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 150 | 148 148 149 | mvlladdi | ⊢ 2  =  ( 4  −  2 ) | 
						
							| 151 | 150 | a1i | ⊢ ( 𝜑  →  2  =  ( 4  −  2 ) ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  =  ( 𝐶 ↑ ( 4  −  2 ) ) ) | 
						
							| 153 | 24 | nn0zd | ⊢ ( 𝜑  →  4  ∈  ℤ ) | 
						
							| 154 | 116 117 119 153 | expsubd | ⊢ ( 𝜑  →  ( 𝐶 ↑ ( 4  −  2 ) )  =  ( ( 𝐶 ↑ 4 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 155 | 152 154 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  =  ( ( 𝐶 ↑ 4 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 156 | 147 155 | breqtrrd | ⊢ ( 𝜑  →  𝐹  ⇝  ( 𝐶 ↑ 2 ) ) |