| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climsuse.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
climsuse.3 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
climsuse.2 |
⊢ Ⅎ 𝑘 𝐺 |
| 4 |
|
climsuse.4 |
⊢ Ⅎ 𝑘 𝐼 |
| 5 |
|
climsuse.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
climsuse.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 |
|
climsuse.7 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
| 8 |
|
climsuse.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 9 |
|
climsuse.9 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| 10 |
|
climsuse.10 |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) |
| 11 |
|
climsuse.11 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
| 12 |
|
climsuse.12 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑌 ) |
| 13 |
|
climsuse.13 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ) |
| 14 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 17 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
| 18 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℤ ) |
| 19 |
17 18
|
ifclda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℤ ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) |
| 21 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) |
| 22 |
20 21
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 23 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝜑 ) |
| 24 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℤ ) |
| 25 |
23 24
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ℤ ) ) |
| 26 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
| 28 |
6
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
| 30 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑗 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑗 ) ) |
| 32 |
27 31
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝜑 ) |
| 34 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 35 |
33 6 34
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 |
32 35
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 37 |
|
uzss |
⊢ ( if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 39 |
38 5
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ 𝑍 ) |
| 40 |
39
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → 𝑖 ∈ 𝑍 ) ) |
| 41 |
25 26 40
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 42 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝑍 |
| 43 |
1 42
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
| 44 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
| 45 |
3 44
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑖 ) |
| 46 |
4 44
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐼 ‘ 𝑖 ) |
| 47 |
2 46
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) |
| 48 |
45 47
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) |
| 49 |
43 48
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 50 |
|
eleq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
| 51 |
50
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 53 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑖 → ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 54 |
52 53
|
eqeq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 55 |
51 54
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) ) |
| 56 |
49 55 13
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 57 |
5
|
eleq2i |
⊢ ( 𝑖 ∈ 𝑍 ↔ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 58 |
57
|
biimpi |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 60 |
|
uzss |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) |
| 63 |
4 62
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐼 ‘ ( 𝑖 + 1 ) ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 ℤ≥ |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
| 67 |
46 65 66
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐼 ‘ 𝑖 ) + 1 ) |
| 68 |
64 67
|
nffv |
⊢ Ⅎ 𝑘 ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) |
| 69 |
63 68
|
nfel |
⊢ Ⅎ 𝑘 ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) |
| 70 |
43 69
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 71 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) = ( 𝐼 ‘ ( 𝑖 + 1 ) ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐼 ‘ 𝑘 ) = ( 𝐼 ‘ 𝑖 ) ) |
| 73 |
72
|
fvoveq1d |
⊢ ( 𝑘 = 𝑖 → ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) = ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 74 |
71 73
|
eleq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ↔ ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) ) |
| 75 |
51 74
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) ) ) |
| 76 |
70 75 11
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 77 |
5 6 10 76
|
climsuselem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 78 |
61 77
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 79 |
78 5
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) |
| 80 |
79
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑍 → ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) |
| 81 |
80
|
imdistani |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) |
| 82 |
42
|
nfci |
⊢ Ⅎ 𝑘 𝑍 |
| 83 |
46 82
|
nfel |
⊢ Ⅎ 𝑘 ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 |
| 84 |
1 83
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) |
| 85 |
47
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ |
| 86 |
84 85
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) |
| 87 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( 𝑘 ∈ 𝑍 ↔ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) |
| 88 |
87
|
anbi2d |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 90 |
89
|
eleq1d |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 91 |
88 90
|
imbi12d |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) ) |
| 92 |
46 86 91 8
|
vtoclgf |
⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 → ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 93 |
79 81 92
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) |
| 94 |
56 93
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 95 |
23 41 94
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 96 |
23 41 56
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 97 |
96
|
fvoveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑖 = ℎ → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ℎ ) ) |
| 99 |
98
|
eleq1d |
⊢ ( 𝑖 = ℎ → ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ↔ ( 𝐹 ‘ ℎ ) ∈ ℂ ) ) |
| 100 |
98
|
fvoveq1d |
⊢ ( 𝑖 = ℎ → ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) ) |
| 101 |
100
|
breq1d |
⊢ ( 𝑖 = ℎ → ( ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 102 |
99 101
|
anbi12d |
⊢ ( 𝑖 = ℎ → ( ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 103 |
102
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 104 |
103
|
biimpi |
⊢ ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) → ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 105 |
104
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 106 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 107 |
106
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℝ ) |
| 108 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) |
| 109 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → 𝑖 ∈ ℤ ) |
| 110 |
|
zre |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℝ ) |
| 111 |
108 109 110
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ℝ ) |
| 112 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝜑 ) |
| 113 |
6
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 114 |
112 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ∈ ℝ ) |
| 115 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
| 116 |
115
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 117 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
| 118 |
116 117
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℝ ) |
| 119 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 120 |
114 107 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 121 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ≤ 𝑖 ) |
| 122 |
121
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ≤ 𝑖 ) |
| 123 |
114 118 111 120 122
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ≤ 𝑖 ) |
| 124 |
112 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ∈ ℤ ) |
| 125 |
109
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ℤ ) |
| 126 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑖 ) ) |
| 127 |
124 125 126
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑖 ) ) |
| 128 |
123 127
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 129 |
128 5
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 130 |
112 129
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) |
| 131 |
|
eluzelre |
⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) ∈ ℝ ) |
| 132 |
130 78 131
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ℝ ) |
| 133 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 134 |
114 107 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 135 |
107 118 111 134 122
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ 𝑖 ) |
| 136 |
|
eluzle |
⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) → 𝑖 ≤ ( 𝐼 ‘ 𝑖 ) ) |
| 137 |
130 77 136
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ≤ ( 𝐼 ‘ 𝑖 ) ) |
| 138 |
107 111 132 135 137
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) |
| 139 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℤ ) |
| 140 |
|
eluzelz |
⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) |
| 141 |
130 77 140
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) |
| 142 |
|
eluz |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) → ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) ) |
| 143 |
139 141 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) ) |
| 144 |
138 143
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 145 |
23 24 26 144
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 146 |
|
fveq2 |
⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( 𝐹 ‘ ℎ ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 147 |
146
|
eleq1d |
⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( 𝐹 ‘ ℎ ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 148 |
146
|
fvoveq1d |
⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) ) |
| 149 |
148
|
breq1d |
⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 150 |
147 149
|
anbi12d |
⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 151 |
150
|
rspccva |
⊢ ( ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ∧ ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 152 |
151
|
simprd |
⊢ ( ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ∧ ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) |
| 153 |
105 145 152
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) |
| 154 |
97 153
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) |
| 155 |
95 154
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 156 |
155
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 157 |
22 156
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 158 |
|
fveq2 |
⊢ ( 𝑙 = if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) |
| 159 |
158
|
raleqdv |
⊢ ( 𝑙 = if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 160 |
159
|
rspcev |
⊢ ( ( if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℤ ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 161 |
19 157 160
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 162 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 163 |
7 162
|
clim |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 164 |
9 163
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 165 |
164
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 166 |
165
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 167 |
161 166
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 168 |
167
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 169 |
16 168
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 170 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 171 |
12 170
|
clim |
⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 172 |
15 169 171
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |