Metamath Proof Explorer


Theorem stirlinglem6

Description: A series that converges to log ( ( N + 1 ) / N ) . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis stirlinglem6.1 H=j0212j+112 N+12j+1
Assertion stirlinglem6 Nseq0+HlogN+1N

Proof

Step Hyp Ref Expression
1 stirlinglem6.1 H=j0212j+112 N+12j+1
2 eqid j1j112 N+1jj=j1j112 N+1jj
3 eqid j12 N+1jj=j12 N+1jj
4 eqid j1j112 N+1jj+12 N+1jj=j1j112 N+1jj+12 N+1jj
5 eqid j02j+1=j02j+1
6 2re 2
7 6 a1i N2
8 nnre NN
9 7 8 remulcld N2 N
10 0le2 02
11 10 a1i N02
12 0red N0
13 nngt0 N0<N
14 12 8 13 ltled N0N
15 7 8 11 14 mulge0d N02 N
16 9 15 ge0p1rpd N2 N+1+
17 16 rpreccld N12 N+1+
18 1red N1
19 18 renegcld N1
20 17 rpred N12 N+1
21 neg1lt0 1<0
22 21 a1i N1<0
23 17 rpgt0d N0<12 N+1
24 19 12 20 22 23 lttrd N1<12 N+1
25 1rp 1+
26 25 a1i N1+
27 1cnd N1
28 27 div1d N11=1
29 2rp 2+
30 29 a1i N2+
31 nnrp NN+
32 30 31 rpmulcld N2 N+
33 18 32 ltaddrp2d N1<2 N+1
34 28 33 eqbrtrd N11<2 N+1
35 26 16 34 ltrec1d N12 N+1<1
36 20 18 absltd N12 N+1<11<12 N+112 N+1<1
37 24 35 36 mpbir2and N12 N+1<1
38 2 3 4 1 5 17 37 stirlinglem5 Nseq0+Hlog1+12 N+1112 N+1
39 2cnd N2
40 nncn NN
41 39 40 mulcld N2 N
42 41 27 addcld N2 N+1
43 9 18 readdcld N2 N+1
44 2pos 0<2
45 44 a1i N0<2
46 7 8 45 13 mulgt0d N0<2 N
47 9 ltp1d N2 N<2 N+1
48 12 9 43 46 47 lttrd N0<2 N+1
49 48 gt0ne0d N2 N+10
50 42 49 dividd N2 N+12 N+1=1
51 50 eqcomd N1=2 N+12 N+1
52 51 oveq1d N1+12 N+1=2 N+12 N+1+12 N+1
53 51 oveq1d N112 N+1=2 N+12 N+112 N+1
54 52 53 oveq12d N1+12 N+1112 N+1=2 N+12 N+1+12 N+12 N+12 N+112 N+1
55 42 27 42 49 divdird N2 N+1+12 N+1=2 N+12 N+1+12 N+1
56 55 eqcomd N2 N+12 N+1+12 N+1=2 N+1+12 N+1
57 42 27 42 49 divsubdird N2 N+1-12 N+1=2 N+12 N+112 N+1
58 57 eqcomd N2 N+12 N+112 N+1=2 N+1-12 N+1
59 56 58 oveq12d N2 N+12 N+1+12 N+12 N+12 N+112 N+1=2 N+1+12 N+12 N+1-12 N+1
60 41 27 27 addassd N2 N+1+1=2 N+1+1
61 1p1e2 1+1=2
62 61 a1i N1+1=2
63 62 oveq2d N2 N+1+1=2 N+2
64 39 mulridd N21=2
65 64 eqcomd N2=21
66 65 oveq2d N2 N+2=2 N+21
67 39 40 27 adddid N2N+1=2 N+21
68 66 67 eqtr4d N2 N+2=2N+1
69 60 63 68 3eqtrd N2 N+1+1=2N+1
70 69 oveq1d N2 N+1+12 N+1=2N+12 N+1
71 41 27 pncand N2 N+1-1=2 N
72 71 oveq1d N2 N+1-12 N+1=2 N2 N+1
73 70 72 oveq12d N2 N+1+12 N+12 N+1-12 N+1=2N+12 N+12 N2 N+1
74 59 73 eqtrd N2 N+12 N+1+12 N+12 N+12 N+112 N+1=2N+12 N+12 N2 N+1
75 40 27 addcld NN+1
76 39 75 mulcld N2N+1
77 46 gt0ne0d N2 N0
78 76 41 42 77 49 divcan7d N2N+12 N+12 N2 N+1=2N+12 N
79 45 gt0ne0d N20
80 13 gt0ne0d NN0
81 39 39 75 40 79 80 divmuldivd N22N+1N=2N+12 N
82 81 eqcomd N2N+12 N=22N+1N
83 39 79 dividd N22=1
84 83 oveq1d N22N+1N=1N+1N
85 75 40 80 divcld NN+1N
86 85 mullidd N1N+1N=N+1N
87 84 86 eqtrd N22N+1N=N+1N
88 78 82 87 3eqtrd N2N+12 N+12 N2 N+1=N+1N
89 54 74 88 3eqtrd N1+12 N+1112 N+1=N+1N
90 89 fveq2d Nlog1+12 N+1112 N+1=logN+1N
91 38 90 breqtrd Nseq0+HlogN+1N