Metamath Proof Explorer


Theorem stirlinglem5

Description: If T is between 0 and 1 , then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem5.1 D = j 1 j 1 T j j
stirlinglem5.2 E = j T j j
stirlinglem5.3 F = j 1 j 1 T j j + T j j
stirlinglem5.4 H = j 0 2 1 2 j + 1 T 2 j + 1
stirlinglem5.5 G = j 0 2 j + 1
stirlinglem5.6 φ T +
stirlinglem5.7 φ T < 1
Assertion stirlinglem5 φ seq 0 + H log 1 + T 1 T

Proof

Step Hyp Ref Expression
1 stirlinglem5.1 D = j 1 j 1 T j j
2 stirlinglem5.2 E = j T j j
3 stirlinglem5.3 F = j 1 j 1 T j j + T j j
4 stirlinglem5.4 H = j 0 2 1 2 j + 1 T 2 j + 1
5 stirlinglem5.5 G = j 0 2 j + 1
6 stirlinglem5.6 φ T +
7 stirlinglem5.7 φ T < 1
8 nnuz = 1
9 1zzd φ 1
10 1 a1i φ D = j 1 j 1 T j j
11 1cnd φ j 1
12 11 negcld φ j 1
13 nnm1nn0 j j 1 0
14 13 adantl φ j j 1 0
15 12 14 expcld φ j 1 j 1
16 nncn j j
17 16 adantl φ j j
18 6 rpred φ T
19 18 recnd φ T
20 19 adantr φ j T
21 nnnn0 j j 0
22 21 adantl φ j j 0
23 20 22 expcld φ j T j
24 nnne0 j j 0
25 24 adantl φ j j 0
26 15 17 23 25 div32d φ j 1 j 1 j T j = 1 j 1 T j j
27 11 20 pncan2d φ j 1 + T - 1 = T
28 27 eqcomd φ j T = 1 + T - 1
29 28 oveq1d φ j T j = 1 + T - 1 j
30 29 oveq2d φ j 1 j 1 j T j = 1 j 1 j 1 + T - 1 j
31 26 30 eqtr3d φ j 1 j 1 T j j = 1 j 1 j 1 + T - 1 j
32 31 mpteq2dva φ j 1 j 1 T j j = j 1 j 1 j 1 + T - 1 j
33 10 32 eqtrd φ D = j 1 j 1 j 1 + T - 1 j
34 33 seqeq3d φ seq 1 + D = seq 1 + j 1 j 1 j 1 + T - 1 j
35 1cnd φ 1
36 35 19 addcld φ 1 + T
37 eqid abs = abs
38 37 cnmetdval 1 1 + T 1 abs 1 + T = 1 1 + T
39 35 36 38 syl2anc φ 1 abs 1 + T = 1 1 + T
40 1m1e0 1 1 = 0
41 40 a1i φ 1 1 = 0
42 41 oveq1d φ 1 - 1 - T = 0 T
43 35 35 19 subsub4d φ 1 - 1 - T = 1 1 + T
44 df-neg T = 0 T
45 44 eqcomi 0 T = T
46 45 a1i φ 0 T = T
47 42 43 46 3eqtr3d φ 1 1 + T = T
48 47 fveq2d φ 1 1 + T = T
49 19 absnegd φ T = T
50 49 7 eqbrtrd φ T < 1
51 48 50 eqbrtrd φ 1 1 + T < 1
52 39 51 eqbrtrd φ 1 abs 1 + T < 1
53 cnxmet abs ∞Met
54 53 a1i φ abs ∞Met
55 1red φ 1
56 55 rexrd φ 1 *
57 elbl2 abs ∞Met 1 * 1 1 + T 1 + T 1 ball abs 1 1 abs 1 + T < 1
58 54 56 35 36 57 syl22anc φ 1 + T 1 ball abs 1 1 abs 1 + T < 1
59 52 58 mpbird φ 1 + T 1 ball abs 1
60 eqid 1 ball abs 1 = 1 ball abs 1
61 60 logtayl2 1 + T 1 ball abs 1 seq 1 + j 1 j 1 j 1 + T - 1 j log 1 + T
62 59 61 syl φ seq 1 + j 1 j 1 j 1 + T - 1 j log 1 + T
63 34 62 eqbrtrd φ seq 1 + D log 1 + T
64 seqex seq 1 + F V
65 64 a1i φ seq 1 + F V
66 2 a1i φ E = j T j j
67 66 seqeq3d φ seq 1 + E = seq 1 + j T j j
68 logtayl T T < 1 seq 1 + j T j j log 1 T
69 19 7 68 syl2anc φ seq 1 + j T j j log 1 T
70 67 69 eqbrtrd φ seq 1 + E log 1 T
71 simpr φ k k
72 71 8 eleqtrdi φ k k 1
73 oveq1 j = n j 1 = n 1
74 73 oveq2d j = n 1 j 1 = 1 n 1
75 oveq2 j = n T j = T n
76 id j = n j = n
77 75 76 oveq12d j = n T j j = T n n
78 74 77 oveq12d j = n 1 j 1 T j j = 1 n 1 T n n
79 elfznn n 1 k n
80 79 adantl φ k n 1 k n
81 1cnd n 1
82 81 negcld n 1
83 nnm1nn0 n n 1 0
84 82 83 expcld n 1 n 1
85 80 84 syl φ k n 1 k 1 n 1
86 19 ad2antrr φ k n 1 k T
87 80 nnnn0d φ k n 1 k n 0
88 86 87 expcld φ k n 1 k T n
89 80 nncnd φ k n 1 k n
90 80 nnne0d φ k n 1 k n 0
91 88 89 90 divcld φ k n 1 k T n n
92 85 91 mulcld φ k n 1 k 1 n 1 T n n
93 1 78 80 92 fvmptd3 φ k n 1 k D n = 1 n 1 T n n
94 93 92 eqeltrd φ k n 1 k D n
95 addcl n i n + i
96 95 adantl φ k n i n + i
97 72 94 96 seqcl φ k seq 1 + D k
98 2 77 80 91 fvmptd3 φ k n 1 k E n = T n n
99 98 91 eqeltrd φ k n 1 k E n
100 72 99 96 seqcl φ k seq 1 + E k
101 simpll φ k n 1 k φ
102 78 77 oveq12d j = n 1 j 1 T j j + T j j = 1 n 1 T n n + T n n
103 simpr φ n n
104 84 adantl φ n 1 n 1
105 19 adantr φ n T
106 103 nnnn0d φ n n 0
107 105 106 expcld φ n T n
108 103 nncnd φ n n
109 103 nnne0d φ n n 0
110 107 108 109 divcld φ n T n n
111 104 110 mulcld φ n 1 n 1 T n n
112 111 110 addcld φ n 1 n 1 T n n + T n n
113 3 102 103 112 fvmptd3 φ n F n = 1 n 1 T n n + T n n
114 1 78 103 111 fvmptd3 φ n D n = 1 n 1 T n n
115 114 eqcomd φ n 1 n 1 T n n = D n
116 2 77 103 110 fvmptd3 φ n E n = T n n
117 116 eqcomd φ n T n n = E n
118 115 117 oveq12d φ n 1 n 1 T n n + T n n = D n + E n
119 113 118 eqtrd φ n F n = D n + E n
120 101 80 119 syl2anc φ k n 1 k F n = D n + E n
121 72 94 99 120 seradd φ k seq 1 + F k = seq 1 + D k + seq 1 + E k
122 8 9 63 65 70 97 100 121 climadd φ seq 1 + F log 1 + T + log 1 T
123 1rp 1 +
124 123 a1i φ 1 +
125 124 6 rpaddcld φ 1 + T +
126 125 rpne0d φ 1 + T 0
127 36 126 logcld φ log 1 + T
128 35 19 subcld φ 1 T
129 18 55 absltd φ T < 1 1 < T T < 1
130 7 129 mpbid φ 1 < T T < 1
131 130 simprd φ T < 1
132 18 131 gtned φ 1 T
133 35 19 132 subne0d φ 1 T 0
134 128 133 logcld φ log 1 T
135 127 134 negsubd φ log 1 + T + log 1 T = log 1 + T log 1 T
136 122 135 breqtrd φ seq 1 + F log 1 + T log 1 T
137 nn0uz 0 = 0
138 0zd φ 0
139 2nn0 2 0
140 139 a1i j 0 2 0
141 id j 0 j 0
142 140 141 nn0mulcld j 0 2 j 0
143 nn0p1nn 2 j 0 2 j + 1
144 142 143 syl j 0 2 j + 1
145 5 144 fmpti G : 0
146 145 a1i φ G : 0
147 2re 2
148 147 a1i k 0 2
149 nn0re k 0 k
150 148 149 remulcld k 0 2 k
151 1red k 0 1
152 149 151 readdcld k 0 k + 1
153 148 152 remulcld k 0 2 k + 1
154 2rp 2 +
155 154 a1i k 0 2 +
156 149 ltp1d k 0 k < k + 1
157 149 152 155 156 ltmul2dd k 0 2 k < 2 k + 1
158 150 153 151 157 ltadd1dd k 0 2 k + 1 < 2 k + 1 + 1
159 5 a1i k 0 G = j 0 2 j + 1
160 simpr k 0 j = k j = k
161 160 oveq2d k 0 j = k 2 j = 2 k
162 161 oveq1d k 0 j = k 2 j + 1 = 2 k + 1
163 id k 0 k 0
164 2cnd k 0 2
165 nn0cn k 0 k
166 164 165 mulcld k 0 2 k
167 1cnd k 0 1
168 166 167 addcld k 0 2 k + 1
169 159 162 163 168 fvmptd k 0 G k = 2 k + 1
170 simpr k 0 j = k + 1 j = k + 1
171 170 oveq2d k 0 j = k + 1 2 j = 2 k + 1
172 171 oveq1d k 0 j = k + 1 2 j + 1 = 2 k + 1 + 1
173 peano2nn0 k 0 k + 1 0
174 165 167 addcld k 0 k + 1
175 164 174 mulcld k 0 2 k + 1
176 175 167 addcld k 0 2 k + 1 + 1
177 159 172 173 176 fvmptd k 0 G k + 1 = 2 k + 1 + 1
178 158 169 177 3brtr4d k 0 G k < G k + 1
179 178 adantl φ k 0 G k < G k + 1
180 eldifi n ran G n
181 180 adantl φ n ran G n
182 1cnd n ran G 1
183 182 negcld n ran G 1
184 180 83 syl n ran G n 1 0
185 183 184 expcld n ran G 1 n 1
186 185 adantl φ n ran G 1 n 1
187 19 adantr φ n ran G T
188 181 nnnn0d φ n ran G n 0
189 187 188 expcld φ n ran G T n
190 181 nncnd φ n ran G n
191 181 nnne0d φ n ran G n 0
192 189 190 191 divcld φ n ran G T n n
193 186 192 mulcld φ n ran G 1 n 1 T n n
194 193 192 addcld φ n ran G 1 n 1 T n n + T n n
195 3 102 181 194 fvmptd3 φ n ran G F n = 1 n 1 T n n + T n n
196 eldifn n ran G ¬ n ran G
197 0nn0 0 0
198 1nn0 1 0
199 139 198 num0h 1 = 2 0 + 1
200 oveq2 j = 0 2 j = 2 0
201 200 oveq1d j = 0 2 j + 1 = 2 0 + 1
202 201 eqeq2d j = 0 1 = 2 j + 1 1 = 2 0 + 1
203 202 rspcev 0 0 1 = 2 0 + 1 j 0 1 = 2 j + 1
204 197 199 203 mp2an j 0 1 = 2 j + 1
205 ax-1cn 1
206 5 elrnmpt 1 1 ran G j 0 1 = 2 j + 1
207 205 206 ax-mp 1 ran G j 0 1 = 2 j + 1
208 204 207 mpbir 1 ran G
209 208 a1i n = 1 1 ran G
210 eleq1 n = 1 n ran G 1 ran G
211 209 210 mpbird n = 1 n ran G
212 196 211 nsyl n ran G ¬ n = 1
213 nn1m1nn n n = 1 n 1
214 180 213 syl n ran G n = 1 n 1
215 214 ord n ran G ¬ n = 1 n 1
216 212 215 mpd n ran G n 1
217 nfcv _ j
218 nfmpt1 _ j j 0 2 j + 1
219 5 218 nfcxfr _ j G
220 219 nfrn _ j ran G
221 217 220 nfdif _ j ran G
222 221 nfcri j n ran G
223 5 elrnmpt n ran G n ran G j 0 n = 2 j + 1
224 196 223 mtbid n ran G ¬ j 0 n = 2 j + 1
225 ralnex j 0 ¬ n = 2 j + 1 ¬ j 0 n = 2 j + 1
226 224 225 sylibr n ran G j 0 ¬ n = 2 j + 1
227 226 r19.21bi n ran G j 0 ¬ n = 2 j + 1
228 227 neqned n ran G j 0 n 2 j + 1
229 228 necomd n ran G j 0 2 j + 1 n
230 229 adantlr n ran G j j 0 2 j + 1 n
231 simplr n ran G j ¬ j 0 j
232 simpr n ran G j ¬ j 0 ¬ j 0
233 180 ad2antrr n ran G j ¬ j 0 n
234 147 a1i j ¬ j 0 2
235 simpl j ¬ j 0 j
236 235 zred j ¬ j 0 j
237 234 236 remulcld j ¬ j 0 2 j
238 0red j ¬ j 0 0
239 1red j ¬ j 0 1
240 2cnd j ¬ j 0 2
241 236 recnd j ¬ j 0 j
242 240 241 mulcomd j ¬ j 0 2 j = j 2
243 simpr j ¬ j 0 ¬ j 0
244 elnn0z j 0 j 0 j
245 243 244 sylnib j ¬ j 0 ¬ j 0 j
246 nan j ¬ j 0 ¬ j 0 j j ¬ j 0 j ¬ 0 j
247 245 246 mpbi j ¬ j 0 j ¬ 0 j
248 247 anabss1 j ¬ j 0 ¬ 0 j
249 236 238 ltnled j ¬ j 0 j < 0 ¬ 0 j
250 248 249 mpbird j ¬ j 0 j < 0
251 154 a1i j ¬ j 0 2 +
252 251 rpregt0d j ¬ j 0 2 0 < 2
253 mulltgt0 j j < 0 2 0 < 2 j 2 < 0
254 236 250 252 253 syl21anc j ¬ j 0 j 2 < 0
255 242 254 eqbrtrd j ¬ j 0 2 j < 0
256 237 238 239 255 ltadd1dd j ¬ j 0 2 j + 1 < 0 + 1
257 1cnd j ¬ j 0 1
258 257 addid2d j ¬ j 0 0 + 1 = 1
259 256 258 breqtrd j ¬ j 0 2 j + 1 < 1
260 237 239 readdcld j ¬ j 0 2 j + 1
261 260 239 ltnled j ¬ j 0 2 j + 1 < 1 ¬ 1 2 j + 1
262 259 261 mpbid j ¬ j 0 ¬ 1 2 j + 1
263 nnge1 2 j + 1 1 2 j + 1
264 262 263 nsyl j ¬ j 0 ¬ 2 j + 1
265 264 adantr j ¬ j 0 n ¬ 2 j + 1
266 simpr n 2 j + 1 = n 2 j + 1 = n
267 simpl n 2 j + 1 = n n
268 266 267 eqeltrd n 2 j + 1 = n 2 j + 1
269 268 adantll j ¬ j 0 n 2 j + 1 = n 2 j + 1
270 265 269 mtand j ¬ j 0 n ¬ 2 j + 1 = n
271 270 neqned j ¬ j 0 n 2 j + 1 n
272 231 232 233 271 syl21anc n ran G j ¬ j 0 2 j + 1 n
273 230 272 pm2.61dan n ran G j 2 j + 1 n
274 273 neneqd n ran G j ¬ 2 j + 1 = n
275 274 ex n ran G j ¬ 2 j + 1 = n
276 222 275 ralrimi n ran G j ¬ 2 j + 1 = n
277 ralnex j ¬ 2 j + 1 = n ¬ j 2 j + 1 = n
278 276 277 sylib n ran G ¬ j 2 j + 1 = n
279 180 nnzd n ran G n
280 odd2np1 n ¬ 2 n j 2 j + 1 = n
281 279 280 syl n ran G ¬ 2 n j 2 j + 1 = n
282 278 281 mtbird n ran G ¬ ¬ 2 n
283 282 notnotrd n ran G 2 n
284 180 nncnd n ran G n
285 284 182 npcand n ran G n - 1 + 1 = n
286 283 285 breqtrrd n ran G 2 n - 1 + 1
287 184 nn0zd n ran G n 1
288 oddp1even n 1 ¬ 2 n 1 2 n - 1 + 1
289 287 288 syl n ran G ¬ 2 n 1 2 n - 1 + 1
290 286 289 mpbird n ran G ¬ 2 n 1
291 oexpneg 1 n 1 ¬ 2 n 1 1 n 1 = 1 n 1
292 182 216 290 291 syl3anc n ran G 1 n 1 = 1 n 1
293 1exp n 1 1 n 1 = 1
294 287 293 syl n ran G 1 n 1 = 1
295 294 negeqd n ran G 1 n 1 = 1
296 292 295 eqtrd n ran G 1 n 1 = 1
297 296 adantl φ n ran G 1 n 1 = 1
298 297 oveq1d φ n ran G 1 n 1 T n n = -1 T n n
299 298 oveq1d φ n ran G 1 n 1 T n n + T n n = -1 T n n + T n n
300 192 mulm1d φ n ran G -1 T n n = T n n
301 300 oveq1d φ n ran G -1 T n n + T n n = - T n n + T n n
302 192 negcld φ n ran G T n n
303 302 192 addcomd φ n ran G - T n n + T n n = T n n + T n n
304 192 negidd φ n ran G T n n + T n n = 0
305 301 303 304 3eqtrd φ n ran G -1 T n n + T n n = 0
306 195 299 305 3eqtrd φ n ran G F n = 0
307 113 112 eqeltrd φ n F n
308 3 a1i φ k 0 F = j 1 j 1 T j j + T j j
309 simpr φ k 0 j = 2 k + 1 j = 2 k + 1
310 309 oveq1d φ k 0 j = 2 k + 1 j 1 = 2 k + 1 - 1
311 310 oveq2d φ k 0 j = 2 k + 1 1 j 1 = 1 2 k + 1 - 1
312 309 oveq2d φ k 0 j = 2 k + 1 T j = T 2 k + 1
313 312 309 oveq12d φ k 0 j = 2 k + 1 T j j = T 2 k + 1 2 k + 1
314 311 313 oveq12d φ k 0 j = 2 k + 1 1 j 1 T j j = 1 2 k + 1 - 1 T 2 k + 1 2 k + 1
315 314 313 oveq12d φ k 0 j = 2 k + 1 1 j 1 T j j + T j j = 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1
316 139 a1i φ k 0 2 0
317 simpr φ k 0 k 0
318 316 317 nn0mulcld φ k 0 2 k 0
319 nn0p1nn 2 k 0 2 k + 1
320 318 319 syl φ k 0 2 k + 1
321 167 negcld k 0 1
322 166 167 pncand k 0 2 k + 1 - 1 = 2 k
323 139 a1i k 0 2 0
324 323 163 nn0mulcld k 0 2 k 0
325 322 324 eqeltrd k 0 2 k + 1 - 1 0
326 321 325 expcld k 0 1 2 k + 1 - 1
327 326 adantl φ k 0 1 2 k + 1 - 1
328 19 adantr φ k 0 T
329 198 a1i φ k 0 1 0
330 318 329 nn0addcld φ k 0 2 k + 1 0
331 328 330 expcld φ k 0 T 2 k + 1
332 2cnd φ k 0 2
333 165 adantl φ k 0 k
334 332 333 mulcld φ k 0 2 k
335 1cnd φ k 0 1
336 334 335 addcld φ k 0 2 k + 1
337 0red φ k 0 0
338 147 a1i φ k 0 2
339 149 adantl φ k 0 k
340 338 339 remulcld φ k 0 2 k
341 1red φ k 0 1
342 0le2 0 2
343 342 a1i φ k 0 0 2
344 317 nn0ge0d φ k 0 0 k
345 338 339 343 344 mulge0d φ k 0 0 2 k
346 0lt1 0 < 1
347 346 a1i φ k 0 0 < 1
348 340 341 345 347 addgegt0d φ k 0 0 < 2 k + 1
349 337 348 gtned φ k 0 2 k + 1 0
350 331 336 349 divcld φ k 0 T 2 k + 1 2 k + 1
351 327 350 mulcld φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1
352 351 350 addcld φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1
353 308 315 320 352 fvmptd φ k 0 F 2 k + 1 = 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1
354 322 adantl φ k 0 2 k + 1 - 1 = 2 k
355 354 oveq2d φ k 0 1 2 k + 1 - 1 = 1 2 k
356 nn0z k 0 k
357 m1expeven k 1 2 k = 1
358 356 357 syl k 0 1 2 k = 1
359 358 adantl φ k 0 1 2 k = 1
360 355 359 eqtrd φ k 0 1 2 k + 1 - 1 = 1
361 360 oveq1d φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 = 1 T 2 k + 1 2 k + 1
362 350 mulid2d φ k 0 1 T 2 k + 1 2 k + 1 = T 2 k + 1 2 k + 1
363 361 362 eqtrd φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 = T 2 k + 1 2 k + 1
364 363 oveq1d φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1 = T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1
365 350 2timesd φ k 0 2 T 2 k + 1 2 k + 1 = T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1
366 331 336 349 divrec2d φ k 0 T 2 k + 1 2 k + 1 = 1 2 k + 1 T 2 k + 1
367 366 oveq2d φ k 0 2 T 2 k + 1 2 k + 1 = 2 1 2 k + 1 T 2 k + 1
368 364 365 367 3eqtr2d φ k 0 1 2 k + 1 - 1 T 2 k + 1 2 k + 1 + T 2 k + 1 2 k + 1 = 2 1 2 k + 1 T 2 k + 1
369 353 368 eqtr2d φ k 0 2 1 2 k + 1 T 2 k + 1 = F 2 k + 1
370 4 a1i φ k 0 H = j 0 2 1 2 j + 1 T 2 j + 1
371 simpr φ k 0 j = k j = k
372 371 oveq2d φ k 0 j = k 2 j = 2 k
373 372 oveq1d φ k 0 j = k 2 j + 1 = 2 k + 1
374 373 oveq2d φ k 0 j = k 1 2 j + 1 = 1 2 k + 1
375 373 oveq2d φ k 0 j = k T 2 j + 1 = T 2 k + 1
376 374 375 oveq12d φ k 0 j = k 1 2 j + 1 T 2 j + 1 = 1 2 k + 1 T 2 k + 1
377 376 oveq2d φ k 0 j = k 2 1 2 j + 1 T 2 j + 1 = 2 1 2 k + 1 T 2 k + 1
378 336 349 reccld φ k 0 1 2 k + 1
379 378 331 mulcld φ k 0 1 2 k + 1 T 2 k + 1
380 332 379 mulcld φ k 0 2 1 2 k + 1 T 2 k + 1
381 370 377 317 380 fvmptd φ k 0 H k = 2 1 2 k + 1 T 2 k + 1
382 198 a1i k 0 1 0
383 324 382 nn0addcld k 0 2 k + 1 0
384 159 162 163 383 fvmptd k 0 G k = 2 k + 1
385 384 adantl φ k 0 G k = 2 k + 1
386 385 fveq2d φ k 0 F G k = F 2 k + 1
387 369 381 386 3eqtr4d φ k 0 H k = F G k
388 137 8 138 9 146 179 306 307 387 isercoll2 φ seq 0 + H log 1 + T log 1 T seq 1 + F log 1 + T log 1 T
389 136 388 mpbird φ seq 0 + H log 1 + T log 1 T
390 55 18 resubcld φ 1 T
391 19 subidd φ T T = 0
392 391 eqcomd φ 0 = T T
393 18 55 18 131 ltsub1dd φ T T < 1 T
394 392 393 eqbrtrd φ 0 < 1 T
395 390 394 elrpd φ 1 T +
396 125 395 relogdivd φ log 1 + T 1 T = log 1 + T log 1 T
397 389 396 breqtrrd φ seq 0 + H log 1 + T 1 T