| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem5.1 |  |-  D = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) | 
						
							| 2 |  | stirlinglem5.2 |  |-  E = ( j e. NN |-> ( ( T ^ j ) / j ) ) | 
						
							| 3 |  | stirlinglem5.3 |  |-  F = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) ) | 
						
							| 4 |  | stirlinglem5.4 |  |-  H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) ) | 
						
							| 5 |  | stirlinglem5.5 |  |-  G = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) | 
						
							| 6 |  | stirlinglem5.6 |  |-  ( ph -> T e. RR+ ) | 
						
							| 7 |  | stirlinglem5.7 |  |-  ( ph -> ( abs ` T ) < 1 ) | 
						
							| 8 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 9 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 10 | 1 | a1i |  |-  ( ph -> D = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) ) | 
						
							| 11 |  | 1cnd |  |-  ( ( ph /\ j e. NN ) -> 1 e. CC ) | 
						
							| 12 | 11 | negcld |  |-  ( ( ph /\ j e. NN ) -> -u 1 e. CC ) | 
						
							| 13 |  | nnm1nn0 |  |-  ( j e. NN -> ( j - 1 ) e. NN0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( j - 1 ) e. NN0 ) | 
						
							| 15 | 12 14 | expcld |  |-  ( ( ph /\ j e. NN ) -> ( -u 1 ^ ( j - 1 ) ) e. CC ) | 
						
							| 16 |  | nncn |  |-  ( j e. NN -> j e. CC ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ j e. NN ) -> j e. CC ) | 
						
							| 18 | 6 | rpred |  |-  ( ph -> T e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ j e. NN ) -> T e. CC ) | 
						
							| 21 |  | nnnn0 |  |-  ( j e. NN -> j e. NN0 ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ j e. NN ) -> j e. NN0 ) | 
						
							| 23 | 20 22 | expcld |  |-  ( ( ph /\ j e. NN ) -> ( T ^ j ) e. CC ) | 
						
							| 24 |  | nnne0 |  |-  ( j e. NN -> j =/= 0 ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ j e. NN ) -> j =/= 0 ) | 
						
							| 26 | 15 17 23 25 | div32d |  |-  ( ( ph /\ j e. NN ) -> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( T ^ j ) ) = ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) | 
						
							| 27 | 11 20 | pncan2d |  |-  ( ( ph /\ j e. NN ) -> ( ( 1 + T ) - 1 ) = T ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ( ph /\ j e. NN ) -> T = ( ( 1 + T ) - 1 ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ( ph /\ j e. NN ) -> ( T ^ j ) = ( ( ( 1 + T ) - 1 ) ^ j ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ph /\ j e. NN ) -> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( T ^ j ) ) = ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) | 
						
							| 31 | 26 30 | eqtr3d |  |-  ( ( ph /\ j e. NN ) -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) | 
						
							| 32 | 31 | mpteq2dva |  |-  ( ph -> ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) ) = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) | 
						
							| 33 | 10 32 | eqtrd |  |-  ( ph -> D = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) | 
						
							| 34 | 33 | seqeq3d |  |-  ( ph -> seq 1 ( + , D ) = seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ) | 
						
							| 35 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 36 | 35 19 | addcld |  |-  ( ph -> ( 1 + T ) e. CC ) | 
						
							| 37 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 38 | 37 | cnmetdval |  |-  ( ( 1 e. CC /\ ( 1 + T ) e. CC ) -> ( 1 ( abs o. - ) ( 1 + T ) ) = ( abs ` ( 1 - ( 1 + T ) ) ) ) | 
						
							| 39 | 35 36 38 | syl2anc |  |-  ( ph -> ( 1 ( abs o. - ) ( 1 + T ) ) = ( abs ` ( 1 - ( 1 + T ) ) ) ) | 
						
							| 40 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 41 | 40 | a1i |  |-  ( ph -> ( 1 - 1 ) = 0 ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ph -> ( ( 1 - 1 ) - T ) = ( 0 - T ) ) | 
						
							| 43 | 35 35 19 | subsub4d |  |-  ( ph -> ( ( 1 - 1 ) - T ) = ( 1 - ( 1 + T ) ) ) | 
						
							| 44 |  | df-neg |  |-  -u T = ( 0 - T ) | 
						
							| 45 | 44 | eqcomi |  |-  ( 0 - T ) = -u T | 
						
							| 46 | 45 | a1i |  |-  ( ph -> ( 0 - T ) = -u T ) | 
						
							| 47 | 42 43 46 | 3eqtr3d |  |-  ( ph -> ( 1 - ( 1 + T ) ) = -u T ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ph -> ( abs ` ( 1 - ( 1 + T ) ) ) = ( abs ` -u T ) ) | 
						
							| 49 | 19 | absnegd |  |-  ( ph -> ( abs ` -u T ) = ( abs ` T ) ) | 
						
							| 50 | 49 7 | eqbrtrd |  |-  ( ph -> ( abs ` -u T ) < 1 ) | 
						
							| 51 | 48 50 | eqbrtrd |  |-  ( ph -> ( abs ` ( 1 - ( 1 + T ) ) ) < 1 ) | 
						
							| 52 | 39 51 | eqbrtrd |  |-  ( ph -> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) | 
						
							| 53 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 54 | 53 | a1i |  |-  ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 55 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 56 | 55 | rexrd |  |-  ( ph -> 1 e. RR* ) | 
						
							| 57 |  | elbl2 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + T ) e. CC ) ) -> ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) ) | 
						
							| 58 | 54 56 35 36 57 | syl22anc |  |-  ( ph -> ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) ( 1 + T ) ) < 1 ) ) | 
						
							| 59 | 52 58 | mpbird |  |-  ( ph -> ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 60 |  | eqid |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 61 | 60 | logtayl2 |  |-  ( ( 1 + T ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ~~> ( log ` ( 1 + T ) ) ) | 
						
							| 62 | 59 61 | syl |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) / j ) x. ( ( ( 1 + T ) - 1 ) ^ j ) ) ) ) ~~> ( log ` ( 1 + T ) ) ) | 
						
							| 63 | 34 62 | eqbrtrd |  |-  ( ph -> seq 1 ( + , D ) ~~> ( log ` ( 1 + T ) ) ) | 
						
							| 64 |  | seqex |  |-  seq 1 ( + , F ) e. _V | 
						
							| 65 | 64 | a1i |  |-  ( ph -> seq 1 ( + , F ) e. _V ) | 
						
							| 66 | 2 | a1i |  |-  ( ph -> E = ( j e. NN |-> ( ( T ^ j ) / j ) ) ) | 
						
							| 67 | 66 | seqeq3d |  |-  ( ph -> seq 1 ( + , E ) = seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ) | 
						
							| 68 |  | logtayl |  |-  ( ( T e. CC /\ ( abs ` T ) < 1 ) -> seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ~~> -u ( log ` ( 1 - T ) ) ) | 
						
							| 69 | 19 7 68 | syl2anc |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( T ^ j ) / j ) ) ) ~~> -u ( log ` ( 1 - T ) ) ) | 
						
							| 70 | 67 69 | eqbrtrd |  |-  ( ph -> seq 1 ( + , E ) ~~> -u ( log ` ( 1 - T ) ) ) | 
						
							| 71 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 72 | 71 8 | eleqtrdi |  |-  ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 73 |  | oveq1 |  |-  ( j = n -> ( j - 1 ) = ( n - 1 ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( j = n -> ( -u 1 ^ ( j - 1 ) ) = ( -u 1 ^ ( n - 1 ) ) ) | 
						
							| 75 |  | oveq2 |  |-  ( j = n -> ( T ^ j ) = ( T ^ n ) ) | 
						
							| 76 |  | id |  |-  ( j = n -> j = n ) | 
						
							| 77 | 75 76 | oveq12d |  |-  ( j = n -> ( ( T ^ j ) / j ) = ( ( T ^ n ) / n ) ) | 
						
							| 78 | 74 77 | oveq12d |  |-  ( j = n -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) | 
						
							| 79 |  | elfznn |  |-  ( n e. ( 1 ... k ) -> n e. NN ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) | 
						
							| 81 |  | 1cnd |  |-  ( n e. NN -> 1 e. CC ) | 
						
							| 82 | 81 | negcld |  |-  ( n e. NN -> -u 1 e. CC ) | 
						
							| 83 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 84 | 82 83 | expcld |  |-  ( n e. NN -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 85 | 80 84 | syl |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 86 | 19 | ad2antrr |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> T e. CC ) | 
						
							| 87 | 80 | nnnn0d |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN0 ) | 
						
							| 88 | 86 87 | expcld |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( T ^ n ) e. CC ) | 
						
							| 89 | 80 | nncnd |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. CC ) | 
						
							| 90 | 80 | nnne0d |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n =/= 0 ) | 
						
							| 91 | 88 89 90 | divcld |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( T ^ n ) / n ) e. CC ) | 
						
							| 92 | 85 91 | mulcld |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) | 
						
							| 93 | 1 78 80 92 | fvmptd3 |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( D ` n ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) | 
						
							| 94 | 93 92 | eqeltrd |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( D ` n ) e. CC ) | 
						
							| 95 |  | addcl |  |-  ( ( n e. CC /\ i e. CC ) -> ( n + i ) e. CC ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( n + i ) e. CC ) | 
						
							| 97 | 72 94 96 | seqcl |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , D ) ` k ) e. CC ) | 
						
							| 98 | 2 77 80 91 | fvmptd3 |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( E ` n ) = ( ( T ^ n ) / n ) ) | 
						
							| 99 | 98 91 | eqeltrd |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( E ` n ) e. CC ) | 
						
							| 100 | 72 99 96 | seqcl |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , E ) ` k ) e. CC ) | 
						
							| 101 |  | simpll |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ph ) | 
						
							| 102 | 78 77 | oveq12d |  |-  ( j = n -> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) | 
						
							| 103 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 104 | 84 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 105 | 19 | adantr |  |-  ( ( ph /\ n e. NN ) -> T e. CC ) | 
						
							| 106 | 103 | nnnn0d |  |-  ( ( ph /\ n e. NN ) -> n e. NN0 ) | 
						
							| 107 | 105 106 | expcld |  |-  ( ( ph /\ n e. NN ) -> ( T ^ n ) e. CC ) | 
						
							| 108 | 103 | nncnd |  |-  ( ( ph /\ n e. NN ) -> n e. CC ) | 
						
							| 109 | 103 | nnne0d |  |-  ( ( ph /\ n e. NN ) -> n =/= 0 ) | 
						
							| 110 | 107 108 109 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( ( T ^ n ) / n ) e. CC ) | 
						
							| 111 | 104 110 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) | 
						
							| 112 | 111 110 | addcld |  |-  ( ( ph /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) e. CC ) | 
						
							| 113 | 3 102 103 112 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) | 
						
							| 114 | 1 78 103 111 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) ) | 
						
							| 115 | 114 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) = ( D ` n ) ) | 
						
							| 116 | 2 77 103 110 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( E ` n ) = ( ( T ^ n ) / n ) ) | 
						
							| 117 | 116 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( T ^ n ) / n ) = ( E ` n ) ) | 
						
							| 118 | 115 117 | oveq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( ( D ` n ) + ( E ` n ) ) ) | 
						
							| 119 | 113 118 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( D ` n ) + ( E ` n ) ) ) | 
						
							| 120 | 101 80 119 | syl2anc |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( F ` n ) = ( ( D ` n ) + ( E ` n ) ) ) | 
						
							| 121 | 72 94 99 120 | seradd |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) = ( ( seq 1 ( + , D ) ` k ) + ( seq 1 ( + , E ) ` k ) ) ) | 
						
							| 122 | 8 9 63 65 70 97 100 121 | climadd |  |-  ( ph -> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) + -u ( log ` ( 1 - T ) ) ) ) | 
						
							| 123 |  | 1rp |  |-  1 e. RR+ | 
						
							| 124 | 123 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 125 | 124 6 | rpaddcld |  |-  ( ph -> ( 1 + T ) e. RR+ ) | 
						
							| 126 | 125 | rpne0d |  |-  ( ph -> ( 1 + T ) =/= 0 ) | 
						
							| 127 | 36 126 | logcld |  |-  ( ph -> ( log ` ( 1 + T ) ) e. CC ) | 
						
							| 128 | 35 19 | subcld |  |-  ( ph -> ( 1 - T ) e. CC ) | 
						
							| 129 | 18 55 | absltd |  |-  ( ph -> ( ( abs ` T ) < 1 <-> ( -u 1 < T /\ T < 1 ) ) ) | 
						
							| 130 | 7 129 | mpbid |  |-  ( ph -> ( -u 1 < T /\ T < 1 ) ) | 
						
							| 131 | 130 | simprd |  |-  ( ph -> T < 1 ) | 
						
							| 132 | 18 131 | gtned |  |-  ( ph -> 1 =/= T ) | 
						
							| 133 | 35 19 132 | subne0d |  |-  ( ph -> ( 1 - T ) =/= 0 ) | 
						
							| 134 | 128 133 | logcld |  |-  ( ph -> ( log ` ( 1 - T ) ) e. CC ) | 
						
							| 135 | 127 134 | negsubd |  |-  ( ph -> ( ( log ` ( 1 + T ) ) + -u ( log ` ( 1 - T ) ) ) = ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) | 
						
							| 136 | 122 135 | breqtrd |  |-  ( ph -> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) | 
						
							| 137 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 138 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 139 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 140 | 139 | a1i |  |-  ( j e. NN0 -> 2 e. NN0 ) | 
						
							| 141 |  | id |  |-  ( j e. NN0 -> j e. NN0 ) | 
						
							| 142 | 140 141 | nn0mulcld |  |-  ( j e. NN0 -> ( 2 x. j ) e. NN0 ) | 
						
							| 143 |  | nn0p1nn |  |-  ( ( 2 x. j ) e. NN0 -> ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 144 | 142 143 | syl |  |-  ( j e. NN0 -> ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 145 | 5 144 | fmpti |  |-  G : NN0 --> NN | 
						
							| 146 | 145 | a1i |  |-  ( ph -> G : NN0 --> NN ) | 
						
							| 147 |  | 2re |  |-  2 e. RR | 
						
							| 148 | 147 | a1i |  |-  ( k e. NN0 -> 2 e. RR ) | 
						
							| 149 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 150 | 148 149 | remulcld |  |-  ( k e. NN0 -> ( 2 x. k ) e. RR ) | 
						
							| 151 |  | 1red |  |-  ( k e. NN0 -> 1 e. RR ) | 
						
							| 152 | 149 151 | readdcld |  |-  ( k e. NN0 -> ( k + 1 ) e. RR ) | 
						
							| 153 | 148 152 | remulcld |  |-  ( k e. NN0 -> ( 2 x. ( k + 1 ) ) e. RR ) | 
						
							| 154 |  | 2rp |  |-  2 e. RR+ | 
						
							| 155 | 154 | a1i |  |-  ( k e. NN0 -> 2 e. RR+ ) | 
						
							| 156 | 149 | ltp1d |  |-  ( k e. NN0 -> k < ( k + 1 ) ) | 
						
							| 157 | 149 152 155 156 | ltmul2dd |  |-  ( k e. NN0 -> ( 2 x. k ) < ( 2 x. ( k + 1 ) ) ) | 
						
							| 158 | 150 153 151 157 | ltadd1dd |  |-  ( k e. NN0 -> ( ( 2 x. k ) + 1 ) < ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 159 | 5 | a1i |  |-  ( k e. NN0 -> G = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 160 |  | simpr |  |-  ( ( k e. NN0 /\ j = k ) -> j = k ) | 
						
							| 161 | 160 | oveq2d |  |-  ( ( k e. NN0 /\ j = k ) -> ( 2 x. j ) = ( 2 x. k ) ) | 
						
							| 162 | 161 | oveq1d |  |-  ( ( k e. NN0 /\ j = k ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 163 |  | id |  |-  ( k e. NN0 -> k e. NN0 ) | 
						
							| 164 |  | 2cnd |  |-  ( k e. NN0 -> 2 e. CC ) | 
						
							| 165 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 166 | 164 165 | mulcld |  |-  ( k e. NN0 -> ( 2 x. k ) e. CC ) | 
						
							| 167 |  | 1cnd |  |-  ( k e. NN0 -> 1 e. CC ) | 
						
							| 168 | 166 167 | addcld |  |-  ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. CC ) | 
						
							| 169 | 159 162 163 168 | fvmptd |  |-  ( k e. NN0 -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 170 |  | simpr |  |-  ( ( k e. NN0 /\ j = ( k + 1 ) ) -> j = ( k + 1 ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ( k e. NN0 /\ j = ( k + 1 ) ) -> ( 2 x. j ) = ( 2 x. ( k + 1 ) ) ) | 
						
							| 172 | 171 | oveq1d |  |-  ( ( k e. NN0 /\ j = ( k + 1 ) ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 173 |  | peano2nn0 |  |-  ( k e. NN0 -> ( k + 1 ) e. NN0 ) | 
						
							| 174 | 165 167 | addcld |  |-  ( k e. NN0 -> ( k + 1 ) e. CC ) | 
						
							| 175 | 164 174 | mulcld |  |-  ( k e. NN0 -> ( 2 x. ( k + 1 ) ) e. CC ) | 
						
							| 176 | 175 167 | addcld |  |-  ( k e. NN0 -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. CC ) | 
						
							| 177 | 159 172 173 176 | fvmptd |  |-  ( k e. NN0 -> ( G ` ( k + 1 ) ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) | 
						
							| 178 | 158 169 177 | 3brtr4d |  |-  ( k e. NN0 -> ( G ` k ) < ( G ` ( k + 1 ) ) ) | 
						
							| 179 | 178 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) | 
						
							| 180 |  | eldifi |  |-  ( n e. ( NN \ ran G ) -> n e. NN ) | 
						
							| 181 | 180 | adantl |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. NN ) | 
						
							| 182 |  | 1cnd |  |-  ( n e. ( NN \ ran G ) -> 1 e. CC ) | 
						
							| 183 | 182 | negcld |  |-  ( n e. ( NN \ ran G ) -> -u 1 e. CC ) | 
						
							| 184 | 180 83 | syl |  |-  ( n e. ( NN \ ran G ) -> ( n - 1 ) e. NN0 ) | 
						
							| 185 | 183 184 | expcld |  |-  ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 186 | 185 | adantl |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 187 | 19 | adantr |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> T e. CC ) | 
						
							| 188 | 181 | nnnn0d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. NN0 ) | 
						
							| 189 | 187 188 | expcld |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( T ^ n ) e. CC ) | 
						
							| 190 | 181 | nncnd |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> n e. CC ) | 
						
							| 191 | 181 | nnne0d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> n =/= 0 ) | 
						
							| 192 | 189 190 191 | divcld |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( T ^ n ) / n ) e. CC ) | 
						
							| 193 | 186 192 | mulcld |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) e. CC ) | 
						
							| 194 | 193 192 | addcld |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) e. CC ) | 
						
							| 195 | 3 102 181 194 | fvmptd3 |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( F ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) | 
						
							| 196 |  | eldifn |  |-  ( n e. ( NN \ ran G ) -> -. n e. ran G ) | 
						
							| 197 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 198 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 199 | 139 198 | num0h |  |-  1 = ( ( 2 x. 0 ) + 1 ) | 
						
							| 200 |  | oveq2 |  |-  ( j = 0 -> ( 2 x. j ) = ( 2 x. 0 ) ) | 
						
							| 201 | 200 | oveq1d |  |-  ( j = 0 -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. 0 ) + 1 ) ) | 
						
							| 202 | 201 | eqeq2d |  |-  ( j = 0 -> ( 1 = ( ( 2 x. j ) + 1 ) <-> 1 = ( ( 2 x. 0 ) + 1 ) ) ) | 
						
							| 203 | 202 | rspcev |  |-  ( ( 0 e. NN0 /\ 1 = ( ( 2 x. 0 ) + 1 ) ) -> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) | 
						
							| 204 | 197 199 203 | mp2an |  |-  E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) | 
						
							| 205 |  | ax-1cn |  |-  1 e. CC | 
						
							| 206 | 5 | elrnmpt |  |-  ( 1 e. CC -> ( 1 e. ran G <-> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 207 | 205 206 | ax-mp |  |-  ( 1 e. ran G <-> E. j e. NN0 1 = ( ( 2 x. j ) + 1 ) ) | 
						
							| 208 | 204 207 | mpbir |  |-  1 e. ran G | 
						
							| 209 | 208 | a1i |  |-  ( n = 1 -> 1 e. ran G ) | 
						
							| 210 |  | eleq1 |  |-  ( n = 1 -> ( n e. ran G <-> 1 e. ran G ) ) | 
						
							| 211 | 209 210 | mpbird |  |-  ( n = 1 -> n e. ran G ) | 
						
							| 212 | 196 211 | nsyl |  |-  ( n e. ( NN \ ran G ) -> -. n = 1 ) | 
						
							| 213 |  | nn1m1nn |  |-  ( n e. NN -> ( n = 1 \/ ( n - 1 ) e. NN ) ) | 
						
							| 214 | 180 213 | syl |  |-  ( n e. ( NN \ ran G ) -> ( n = 1 \/ ( n - 1 ) e. NN ) ) | 
						
							| 215 | 214 | ord |  |-  ( n e. ( NN \ ran G ) -> ( -. n = 1 -> ( n - 1 ) e. NN ) ) | 
						
							| 216 | 212 215 | mpd |  |-  ( n e. ( NN \ ran G ) -> ( n - 1 ) e. NN ) | 
						
							| 217 |  | nfcv |  |-  F/_ j NN | 
						
							| 218 |  | nfmpt1 |  |-  F/_ j ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) | 
						
							| 219 | 5 218 | nfcxfr |  |-  F/_ j G | 
						
							| 220 | 219 | nfrn |  |-  F/_ j ran G | 
						
							| 221 | 217 220 | nfdif |  |-  F/_ j ( NN \ ran G ) | 
						
							| 222 | 221 | nfcri |  |-  F/ j n e. ( NN \ ran G ) | 
						
							| 223 | 5 | elrnmpt |  |-  ( n e. ( NN \ ran G ) -> ( n e. ran G <-> E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 224 | 196 223 | mtbid |  |-  ( n e. ( NN \ ran G ) -> -. E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) | 
						
							| 225 |  | ralnex |  |-  ( A. j e. NN0 -. n = ( ( 2 x. j ) + 1 ) <-> -. E. j e. NN0 n = ( ( 2 x. j ) + 1 ) ) | 
						
							| 226 | 224 225 | sylibr |  |-  ( n e. ( NN \ ran G ) -> A. j e. NN0 -. n = ( ( 2 x. j ) + 1 ) ) | 
						
							| 227 | 226 | r19.21bi |  |-  ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> -. n = ( ( 2 x. j ) + 1 ) ) | 
						
							| 228 | 227 | neqned |  |-  ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> n =/= ( ( 2 x. j ) + 1 ) ) | 
						
							| 229 | 228 | necomd |  |-  ( ( n e. ( NN \ ran G ) /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) | 
						
							| 230 | 229 | adantlr |  |-  ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) | 
						
							| 231 |  | simplr |  |-  ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> j e. ZZ ) | 
						
							| 232 |  | simpr |  |-  ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> -. j e. NN0 ) | 
						
							| 233 | 180 | ad2antrr |  |-  ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> n e. NN ) | 
						
							| 234 | 147 | a1i |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. RR ) | 
						
							| 235 |  | simpl |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. ZZ ) | 
						
							| 236 | 235 | zred |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. RR ) | 
						
							| 237 | 234 236 | remulcld |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) e. RR ) | 
						
							| 238 |  | 0red |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 0 e. RR ) | 
						
							| 239 |  | 1red |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 1 e. RR ) | 
						
							| 240 |  | 2cnd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. CC ) | 
						
							| 241 | 236 | recnd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> j e. CC ) | 
						
							| 242 | 240 241 | mulcomd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) = ( j x. 2 ) ) | 
						
							| 243 |  | simpr |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> -. j e. NN0 ) | 
						
							| 244 |  | elnn0z |  |-  ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 245 | 243 244 | sylnib |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 246 |  | nan |  |-  ( ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( j e. ZZ /\ 0 <_ j ) ) <-> ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ j e. ZZ ) -> -. 0 <_ j ) ) | 
						
							| 247 | 245 246 | mpbi |  |-  ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ j e. ZZ ) -> -. 0 <_ j ) | 
						
							| 248 | 247 | anabss1 |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> -. 0 <_ j ) | 
						
							| 249 | 236 238 | ltnled |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( j < 0 <-> -. 0 <_ j ) ) | 
						
							| 250 | 248 249 | mpbird |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> j < 0 ) | 
						
							| 251 | 154 | a1i |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 2 e. RR+ ) | 
						
							| 252 | 251 | rpregt0d |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 253 |  | mulltgt0 |  |-  ( ( ( j e. RR /\ j < 0 ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( j x. 2 ) < 0 ) | 
						
							| 254 | 236 250 252 253 | syl21anc |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( j x. 2 ) < 0 ) | 
						
							| 255 | 242 254 | eqbrtrd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 2 x. j ) < 0 ) | 
						
							| 256 | 237 238 239 255 | ltadd1dd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) < ( 0 + 1 ) ) | 
						
							| 257 |  | 1cnd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> 1 e. CC ) | 
						
							| 258 | 257 | addlidd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( 0 + 1 ) = 1 ) | 
						
							| 259 | 256 258 | breqtrd |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) < 1 ) | 
						
							| 260 | 237 239 | readdcld |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. RR ) | 
						
							| 261 | 260 239 | ltnled |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> ( ( ( 2 x. j ) + 1 ) < 1 <-> -. 1 <_ ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 262 | 259 261 | mpbid |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> -. 1 <_ ( ( 2 x. j ) + 1 ) ) | 
						
							| 263 |  | nnge1 |  |-  ( ( ( 2 x. j ) + 1 ) e. NN -> 1 <_ ( ( 2 x. j ) + 1 ) ) | 
						
							| 264 | 262 263 | nsyl |  |-  ( ( j e. ZZ /\ -. j e. NN0 ) -> -. ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 265 | 264 | adantr |  |-  ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> -. ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 266 |  | simpr |  |-  ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 267 |  | simpl |  |-  ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> n e. NN ) | 
						
							| 268 | 266 267 | eqeltrd |  |-  ( ( n e. NN /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 269 | 268 | adantll |  |-  ( ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) /\ ( ( 2 x. j ) + 1 ) = n ) -> ( ( 2 x. j ) + 1 ) e. NN ) | 
						
							| 270 | 265 269 | mtand |  |-  ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> -. ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 271 | 270 | neqned |  |-  ( ( ( j e. ZZ /\ -. j e. NN0 ) /\ n e. NN ) -> ( ( 2 x. j ) + 1 ) =/= n ) | 
						
							| 272 | 231 232 233 271 | syl21anc |  |-  ( ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) /\ -. j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= n ) | 
						
							| 273 | 230 272 | pm2.61dan |  |-  ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) -> ( ( 2 x. j ) + 1 ) =/= n ) | 
						
							| 274 | 273 | neneqd |  |-  ( ( n e. ( NN \ ran G ) /\ j e. ZZ ) -> -. ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 275 | 274 | ex |  |-  ( n e. ( NN \ ran G ) -> ( j e. ZZ -> -. ( ( 2 x. j ) + 1 ) = n ) ) | 
						
							| 276 | 222 275 | ralrimi |  |-  ( n e. ( NN \ ran G ) -> A. j e. ZZ -. ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 277 |  | ralnex |  |-  ( A. j e. ZZ -. ( ( 2 x. j ) + 1 ) = n <-> -. E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 278 | 276 277 | sylib |  |-  ( n e. ( NN \ ran G ) -> -. E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) | 
						
							| 279 | 180 | nnzd |  |-  ( n e. ( NN \ ran G ) -> n e. ZZ ) | 
						
							| 280 |  | odd2np1 |  |-  ( n e. ZZ -> ( -. 2 || n <-> E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) ) | 
						
							| 281 | 279 280 | syl |  |-  ( n e. ( NN \ ran G ) -> ( -. 2 || n <-> E. j e. ZZ ( ( 2 x. j ) + 1 ) = n ) ) | 
						
							| 282 | 278 281 | mtbird |  |-  ( n e. ( NN \ ran G ) -> -. -. 2 || n ) | 
						
							| 283 | 282 | notnotrd |  |-  ( n e. ( NN \ ran G ) -> 2 || n ) | 
						
							| 284 | 180 | nncnd |  |-  ( n e. ( NN \ ran G ) -> n e. CC ) | 
						
							| 285 | 284 182 | npcand |  |-  ( n e. ( NN \ ran G ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 286 | 283 285 | breqtrrd |  |-  ( n e. ( NN \ ran G ) -> 2 || ( ( n - 1 ) + 1 ) ) | 
						
							| 287 | 184 | nn0zd |  |-  ( n e. ( NN \ ran G ) -> ( n - 1 ) e. ZZ ) | 
						
							| 288 |  | oddp1even |  |-  ( ( n - 1 ) e. ZZ -> ( -. 2 || ( n - 1 ) <-> 2 || ( ( n - 1 ) + 1 ) ) ) | 
						
							| 289 | 287 288 | syl |  |-  ( n e. ( NN \ ran G ) -> ( -. 2 || ( n - 1 ) <-> 2 || ( ( n - 1 ) + 1 ) ) ) | 
						
							| 290 | 286 289 | mpbird |  |-  ( n e. ( NN \ ran G ) -> -. 2 || ( n - 1 ) ) | 
						
							| 291 |  | oexpneg |  |-  ( ( 1 e. CC /\ ( n - 1 ) e. NN /\ -. 2 || ( n - 1 ) ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( 1 ^ ( n - 1 ) ) ) | 
						
							| 292 | 182 216 290 291 | syl3anc |  |-  ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( 1 ^ ( n - 1 ) ) ) | 
						
							| 293 |  | 1exp |  |-  ( ( n - 1 ) e. ZZ -> ( 1 ^ ( n - 1 ) ) = 1 ) | 
						
							| 294 | 287 293 | syl |  |-  ( n e. ( NN \ ran G ) -> ( 1 ^ ( n - 1 ) ) = 1 ) | 
						
							| 295 | 294 | negeqd |  |-  ( n e. ( NN \ ran G ) -> -u ( 1 ^ ( n - 1 ) ) = -u 1 ) | 
						
							| 296 | 292 295 | eqtrd |  |-  ( n e. ( NN \ ran G ) -> ( -u 1 ^ ( n - 1 ) ) = -u 1 ) | 
						
							| 297 | 296 | adantl |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 ^ ( n - 1 ) ) = -u 1 ) | 
						
							| 298 | 297 | oveq1d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) = ( -u 1 x. ( ( T ^ n ) / n ) ) ) | 
						
							| 299 | 298 | oveq1d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) ) | 
						
							| 300 | 192 | mulm1d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u 1 x. ( ( T ^ n ) / n ) ) = -u ( ( T ^ n ) / n ) ) | 
						
							| 301 | 300 | oveq1d |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = ( -u ( ( T ^ n ) / n ) + ( ( T ^ n ) / n ) ) ) | 
						
							| 302 | 192 | negcld |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> -u ( ( T ^ n ) / n ) e. CC ) | 
						
							| 303 | 302 192 | addcomd |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( -u ( ( T ^ n ) / n ) + ( ( T ^ n ) / n ) ) = ( ( ( T ^ n ) / n ) + -u ( ( T ^ n ) / n ) ) ) | 
						
							| 304 | 192 | negidd |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( ( T ^ n ) / n ) + -u ( ( T ^ n ) / n ) ) = 0 ) | 
						
							| 305 | 301 303 304 | 3eqtrd |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( ( -u 1 x. ( ( T ^ n ) / n ) ) + ( ( T ^ n ) / n ) ) = 0 ) | 
						
							| 306 | 195 299 305 | 3eqtrd |  |-  ( ( ph /\ n e. ( NN \ ran G ) ) -> ( F ` n ) = 0 ) | 
						
							| 307 | 113 112 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. CC ) | 
						
							| 308 | 3 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> F = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) ) ) | 
						
							| 309 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> j = ( ( 2 x. k ) + 1 ) ) | 
						
							| 310 | 309 | oveq1d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( j - 1 ) = ( ( ( 2 x. k ) + 1 ) - 1 ) ) | 
						
							| 311 | 310 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( -u 1 ^ ( j - 1 ) ) = ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) ) | 
						
							| 312 | 309 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( T ^ j ) = ( T ^ ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 313 | 312 309 | oveq12d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( T ^ j ) / j ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 314 | 311 313 | oveq12d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) = ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 315 | 314 313 | oveq12d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = ( ( 2 x. k ) + 1 ) ) -> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( T ^ j ) / j ) ) + ( ( T ^ j ) / j ) ) = ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 316 | 139 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 2 e. NN0 ) | 
						
							| 317 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 318 | 316 317 | nn0mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) | 
						
							| 319 |  | nn0p1nn |  |-  ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 320 | 318 319 | syl |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 321 | 167 | negcld |  |-  ( k e. NN0 -> -u 1 e. CC ) | 
						
							| 322 | 166 167 | pncand |  |-  ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) | 
						
							| 323 | 139 | a1i |  |-  ( k e. NN0 -> 2 e. NN0 ) | 
						
							| 324 | 323 163 | nn0mulcld |  |-  ( k e. NN0 -> ( 2 x. k ) e. NN0 ) | 
						
							| 325 | 322 324 | eqeltrd |  |-  ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) - 1 ) e. NN0 ) | 
						
							| 326 | 321 325 | expcld |  |-  ( k e. NN0 -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) e. CC ) | 
						
							| 327 | 326 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) e. CC ) | 
						
							| 328 | 19 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> T e. CC ) | 
						
							| 329 | 198 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 1 e. NN0 ) | 
						
							| 330 | 318 329 | nn0addcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN0 ) | 
						
							| 331 | 328 330 | expcld |  |-  ( ( ph /\ k e. NN0 ) -> ( T ^ ( ( 2 x. k ) + 1 ) ) e. CC ) | 
						
							| 332 |  | 2cnd |  |-  ( ( ph /\ k e. NN0 ) -> 2 e. CC ) | 
						
							| 333 | 165 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. CC ) | 
						
							| 334 | 332 333 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. CC ) | 
						
							| 335 |  | 1cnd |  |-  ( ( ph /\ k e. NN0 ) -> 1 e. CC ) | 
						
							| 336 | 334 335 | addcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. CC ) | 
						
							| 337 |  | 0red |  |-  ( ( ph /\ k e. NN0 ) -> 0 e. RR ) | 
						
							| 338 | 147 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 2 e. RR ) | 
						
							| 339 | 149 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. RR ) | 
						
							| 340 | 338 339 | remulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. k ) e. RR ) | 
						
							| 341 |  | 1red |  |-  ( ( ph /\ k e. NN0 ) -> 1 e. RR ) | 
						
							| 342 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 343 | 342 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ 2 ) | 
						
							| 344 | 317 | nn0ge0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ k ) | 
						
							| 345 | 338 339 343 344 | mulge0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ ( 2 x. k ) ) | 
						
							| 346 |  | 0lt1 |  |-  0 < 1 | 
						
							| 347 | 346 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> 0 < 1 ) | 
						
							| 348 | 340 341 345 347 | addgegt0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 < ( ( 2 x. k ) + 1 ) ) | 
						
							| 349 | 337 348 | gtned |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) =/= 0 ) | 
						
							| 350 | 331 336 349 | divcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) e. CC ) | 
						
							| 351 | 327 350 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. CC ) | 
						
							| 352 | 351 350 | addcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. CC ) | 
						
							| 353 | 308 315 320 352 | fvmptd |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` ( ( 2 x. k ) + 1 ) ) = ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 354 | 322 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) | 
						
							| 355 | 354 | oveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) = ( -u 1 ^ ( 2 x. k ) ) ) | 
						
							| 356 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 357 |  | m1expeven |  |-  ( k e. ZZ -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) | 
						
							| 358 | 356 357 | syl |  |-  ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) | 
						
							| 359 | 358 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( 2 x. k ) ) = 1 ) | 
						
							| 360 | 355 359 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) = 1 ) | 
						
							| 361 | 360 | oveq1d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 1 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 362 | 350 | mullidd |  |-  ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 363 | 361 362 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 364 | 363 | oveq1d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 365 | 350 | 2timesd |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 366 | 331 336 349 | divrec2d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 367 | 366 | oveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) | 
						
							| 368 | 364 365 367 | 3eqtr2d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( -u 1 ^ ( ( ( 2 x. k ) + 1 ) - 1 ) ) x. ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) + ( ( T ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) | 
						
							| 369 | 353 368 | eqtr2d |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( F ` ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 370 | 4 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) ) ) | 
						
							| 371 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) | 
						
							| 372 | 371 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 2 x. j ) = ( 2 x. k ) ) | 
						
							| 373 | 372 | oveq1d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 374 | 373 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 375 | 373 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( T ^ ( ( 2 x. j ) + 1 ) ) = ( T ^ ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 376 | 374 375 | oveq12d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 377 | 376 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( T ^ ( ( 2 x. j ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) | 
						
							| 378 | 336 349 | reccld |  |-  ( ( ph /\ k e. NN0 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. CC ) | 
						
							| 379 | 378 331 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) e. CC ) | 
						
							| 380 | 332 379 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) | 
						
							| 381 | 370 377 317 380 | fvmptd |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( T ^ ( ( 2 x. k ) + 1 ) ) ) ) ) | 
						
							| 382 | 198 | a1i |  |-  ( k e. NN0 -> 1 e. NN0 ) | 
						
							| 383 | 324 382 | nn0addcld |  |-  ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) | 
						
							| 384 | 159 162 163 383 | fvmptd |  |-  ( k e. NN0 -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 385 | 384 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 386 | 385 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` ( G ` k ) ) = ( F ` ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 387 | 369 381 386 | 3eqtr4d |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 388 | 137 8 138 9 146 179 306 307 387 | isercoll2 |  |-  ( ph -> ( seq 0 ( + , H ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) <-> seq 1 ( + , F ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) ) | 
						
							| 389 | 136 388 | mpbird |  |-  ( ph -> seq 0 ( + , H ) ~~> ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) | 
						
							| 390 | 55 18 | resubcld |  |-  ( ph -> ( 1 - T ) e. RR ) | 
						
							| 391 | 19 | subidd |  |-  ( ph -> ( T - T ) = 0 ) | 
						
							| 392 | 391 | eqcomd |  |-  ( ph -> 0 = ( T - T ) ) | 
						
							| 393 | 18 55 18 131 | ltsub1dd |  |-  ( ph -> ( T - T ) < ( 1 - T ) ) | 
						
							| 394 | 392 393 | eqbrtrd |  |-  ( ph -> 0 < ( 1 - T ) ) | 
						
							| 395 | 390 394 | elrpd |  |-  ( ph -> ( 1 - T ) e. RR+ ) | 
						
							| 396 | 125 395 | relogdivd |  |-  ( ph -> ( log ` ( ( 1 + T ) / ( 1 - T ) ) ) = ( ( log ` ( 1 + T ) ) - ( log ` ( 1 - T ) ) ) ) | 
						
							| 397 | 389 396 | breqtrrd |  |-  ( ph -> seq 0 ( + , H ) ~~> ( log ` ( ( 1 + T ) / ( 1 - T ) ) ) ) |