| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem5.1 | ⊢ 𝐷  =  ( 𝑗  ∈  ℕ  ↦  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) | 
						
							| 2 |  | stirlinglem5.2 | ⊢ 𝐸  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) | 
						
							| 3 |  | stirlinglem5.3 | ⊢ 𝐹  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  +  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) | 
						
							| 4 |  | stirlinglem5.4 | ⊢ 𝐻  =  ( 𝑗  ∈  ℕ0  ↦  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) ) ) | 
						
							| 5 |  | stirlinglem5.5 | ⊢ 𝐺  =  ( 𝑗  ∈  ℕ0  ↦  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 6 |  | stirlinglem5.6 | ⊢ ( 𝜑  →  𝑇  ∈  ℝ+ ) | 
						
							| 7 |  | stirlinglem5.7 | ⊢ ( 𝜑  →  ( abs ‘ 𝑇 )  <  1 ) | 
						
							| 8 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 9 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 10 | 1 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑗  ∈  ℕ  ↦  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) ) | 
						
							| 11 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 12 | 11 | negcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  - 1  ∈  ℂ ) | 
						
							| 13 |  | nnm1nn0 | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  −  1 )  ∈  ℕ0 ) | 
						
							| 15 | 12 14 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( - 1 ↑ ( 𝑗  −  1 ) )  ∈  ℂ ) | 
						
							| 16 |  | nncn | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℂ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℂ ) | 
						
							| 18 | 6 | rpred | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑇  ∈  ℂ ) | 
						
							| 21 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ0 ) | 
						
							| 23 | 20 22 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 24 |  | nnne0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ≠  0 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ≠  0 ) | 
						
							| 26 | 15 17 23 25 | div32d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( 𝑇 ↑ 𝑗 ) )  =  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) | 
						
							| 27 | 11 20 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( 1  +  𝑇 )  −  1 )  =  𝑇 ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑇  =  ( ( 1  +  𝑇 )  −  1 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ↑ 𝑗 )  =  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( 𝑇 ↑ 𝑗 ) )  =  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) | 
						
							| 31 | 26 30 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  =  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) | 
						
							| 32 | 31 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℕ  ↦  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) ) | 
						
							| 33 | 10 32 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) ) | 
						
							| 34 | 33 | seqeq3d | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐷 )  =  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) ) ) | 
						
							| 35 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 36 | 35 19 | addcld | ⊢ ( 𝜑  →  ( 1  +  𝑇 )  ∈  ℂ ) | 
						
							| 37 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 38 | 37 | cnmetdval | ⊢ ( ( 1  ∈  ℂ  ∧  ( 1  +  𝑇 )  ∈  ℂ )  →  ( 1 ( abs  ∘   −  ) ( 1  +  𝑇 ) )  =  ( abs ‘ ( 1  −  ( 1  +  𝑇 ) ) ) ) | 
						
							| 39 | 35 36 38 | syl2anc | ⊢ ( 𝜑  →  ( 1 ( abs  ∘   −  ) ( 1  +  𝑇 ) )  =  ( abs ‘ ( 1  −  ( 1  +  𝑇 ) ) ) ) | 
						
							| 40 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ( 1  −  1 )  =  0 ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  −  1 )  −  𝑇 )  =  ( 0  −  𝑇 ) ) | 
						
							| 43 | 35 35 19 | subsub4d | ⊢ ( 𝜑  →  ( ( 1  −  1 )  −  𝑇 )  =  ( 1  −  ( 1  +  𝑇 ) ) ) | 
						
							| 44 |  | df-neg | ⊢ - 𝑇  =  ( 0  −  𝑇 ) | 
						
							| 45 | 44 | eqcomi | ⊢ ( 0  −  𝑇 )  =  - 𝑇 | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  ( 0  −  𝑇 )  =  - 𝑇 ) | 
						
							| 47 | 42 43 46 | 3eqtr3d | ⊢ ( 𝜑  →  ( 1  −  ( 1  +  𝑇 ) )  =  - 𝑇 ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( 1  −  ( 1  +  𝑇 ) ) )  =  ( abs ‘ - 𝑇 ) ) | 
						
							| 49 | 19 | absnegd | ⊢ ( 𝜑  →  ( abs ‘ - 𝑇 )  =  ( abs ‘ 𝑇 ) ) | 
						
							| 50 | 49 7 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ - 𝑇 )  <  1 ) | 
						
							| 51 | 48 50 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( 1  −  ( 1  +  𝑇 ) ) )  <  1 ) | 
						
							| 52 | 39 51 | eqbrtrd | ⊢ ( 𝜑  →  ( 1 ( abs  ∘   −  ) ( 1  +  𝑇 ) )  <  1 ) | 
						
							| 53 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 55 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 56 | 55 | rexrd | ⊢ ( 𝜑  →  1  ∈  ℝ* ) | 
						
							| 57 |  | elbl2 | ⊢ ( ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  1  ∈  ℝ* )  ∧  ( 1  ∈  ℂ  ∧  ( 1  +  𝑇 )  ∈  ℂ ) )  →  ( ( 1  +  𝑇 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 1 ( abs  ∘   −  ) ( 1  +  𝑇 ) )  <  1 ) ) | 
						
							| 58 | 54 56 35 36 57 | syl22anc | ⊢ ( 𝜑  →  ( ( 1  +  𝑇 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  ↔  ( 1 ( abs  ∘   −  ) ( 1  +  𝑇 ) )  <  1 ) ) | 
						
							| 59 | 52 58 | mpbird | ⊢ ( 𝜑  →  ( 1  +  𝑇 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) ) | 
						
							| 60 |  | eqid | ⊢ ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  =  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 ) | 
						
							| 61 | 60 | logtayl2 | ⊢ ( ( 1  +  𝑇 )  ∈  ( 1 ( ball ‘ ( abs  ∘   −  ) ) 1 )  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) )  ⇝  ( log ‘ ( 1  +  𝑇 ) ) ) | 
						
							| 62 | 59 61 | syl | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  /  𝑗 )  ·  ( ( ( 1  +  𝑇 )  −  1 ) ↑ 𝑗 ) ) ) )  ⇝  ( log ‘ ( 1  +  𝑇 ) ) ) | 
						
							| 63 | 34 62 | eqbrtrd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐷 )  ⇝  ( log ‘ ( 1  +  𝑇 ) ) ) | 
						
							| 64 |  | seqex | ⊢ seq 1 (  +  ,  𝐹 )  ∈  V | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  ∈  V ) | 
						
							| 66 | 2 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) | 
						
							| 67 | 66 | seqeq3d | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐸 )  =  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) ) | 
						
							| 68 |  | logtayl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  ( abs ‘ 𝑇 )  <  1 )  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) )  ⇝  - ( log ‘ ( 1  −  𝑇 ) ) ) | 
						
							| 69 | 19 7 68 | syl2anc | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑗  ∈  ℕ  ↦  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) )  ⇝  - ( log ‘ ( 1  −  𝑇 ) ) ) | 
						
							| 70 | 67 69 | eqbrtrd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐸 )  ⇝  - ( log ‘ ( 1  −  𝑇 ) ) ) | 
						
							| 71 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 72 | 71 8 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 73 |  | oveq1 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑗  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑗  =  𝑛  →  ( - 1 ↑ ( 𝑗  −  1 ) )  =  ( - 1 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 75 |  | oveq2 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑇 ↑ 𝑗 )  =  ( 𝑇 ↑ 𝑛 ) ) | 
						
							| 76 |  | id | ⊢ ( 𝑗  =  𝑛  →  𝑗  =  𝑛 ) | 
						
							| 77 | 75 76 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 )  =  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) | 
						
							| 78 | 74 77 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  =  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 79 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑘 )  →  𝑛  ∈  ℕ ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 81 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 82 | 81 | negcld | ⊢ ( 𝑛  ∈  ℕ  →  - 1  ∈  ℂ ) | 
						
							| 83 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 84 | 82 83 | expcld | ⊢ ( 𝑛  ∈  ℕ  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 85 | 80 84 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 86 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 87 | 80 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 88 | 86 87 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝑇 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 89 | 80 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 90 | 80 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝑛  ≠  0 ) | 
						
							| 91 | 88 89 90 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 92 | 85 91 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 93 | 1 78 80 92 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐷 ‘ 𝑛 )  =  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 94 | 93 92 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐷 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 95 |  | addcl | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ )  →  ( 𝑛  +  𝑖 )  ∈  ℂ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑛  ∈  ℂ  ∧  𝑖  ∈  ℂ ) )  →  ( 𝑛  +  𝑖 )  ∈  ℂ ) | 
						
							| 97 | 72 94 96 | seqcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐷 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 98 | 2 77 80 91 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐸 ‘ 𝑛 )  =  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) | 
						
							| 99 | 98 91 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐸 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 100 | 72 99 96 | seqcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐸 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 101 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  𝜑 ) | 
						
							| 102 | 78 77 | oveq12d | ⊢ ( 𝑗  =  𝑛  →  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  +  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  =  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 103 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 104 | 84 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 105 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑇  ∈  ℂ ) | 
						
							| 106 | 103 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 107 | 105 106 | expcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑇 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 108 | 103 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 109 | 103 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ≠  0 ) | 
						
							| 110 | 107 108 109 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 111 | 104 110 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 112 | 111 110 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 113 | 3 102 103 112 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 114 | 1 78 103 111 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 115 | 114 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 116 | 2 77 103 110 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐸 ‘ 𝑛 )  =  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) | 
						
							| 117 | 116 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 118 | 115 117 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( ( 𝐷 ‘ 𝑛 )  +  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 119 | 113 118 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐷 ‘ 𝑛 )  +  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 120 | 101 80 119 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑘 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐷 ‘ 𝑛 )  +  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 121 | 72 94 99 120 | seradd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑘 )  =  ( ( seq 1 (  +  ,  𝐷 ) ‘ 𝑘 )  +  ( seq 1 (  +  ,  𝐸 ) ‘ 𝑘 ) ) ) | 
						
							| 122 | 8 9 63 65 70 97 100 121 | climadd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  ⇝  ( ( log ‘ ( 1  +  𝑇 ) )  +  - ( log ‘ ( 1  −  𝑇 ) ) ) ) | 
						
							| 123 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 124 | 123 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ+ ) | 
						
							| 125 | 124 6 | rpaddcld | ⊢ ( 𝜑  →  ( 1  +  𝑇 )  ∈  ℝ+ ) | 
						
							| 126 | 125 | rpne0d | ⊢ ( 𝜑  →  ( 1  +  𝑇 )  ≠  0 ) | 
						
							| 127 | 36 126 | logcld | ⊢ ( 𝜑  →  ( log ‘ ( 1  +  𝑇 ) )  ∈  ℂ ) | 
						
							| 128 | 35 19 | subcld | ⊢ ( 𝜑  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 129 | 18 55 | absltd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑇 )  <  1  ↔  ( - 1  <  𝑇  ∧  𝑇  <  1 ) ) ) | 
						
							| 130 | 7 129 | mpbid | ⊢ ( 𝜑  →  ( - 1  <  𝑇  ∧  𝑇  <  1 ) ) | 
						
							| 131 | 130 | simprd | ⊢ ( 𝜑  →  𝑇  <  1 ) | 
						
							| 132 | 18 131 | gtned | ⊢ ( 𝜑  →  1  ≠  𝑇 ) | 
						
							| 133 | 35 19 132 | subne0d | ⊢ ( 𝜑  →  ( 1  −  𝑇 )  ≠  0 ) | 
						
							| 134 | 128 133 | logcld | ⊢ ( 𝜑  →  ( log ‘ ( 1  −  𝑇 ) )  ∈  ℂ ) | 
						
							| 135 | 127 134 | negsubd | ⊢ ( 𝜑  →  ( ( log ‘ ( 1  +  𝑇 ) )  +  - ( log ‘ ( 1  −  𝑇 ) ) )  =  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) ) ) | 
						
							| 136 | 122 135 | breqtrd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  ⇝  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) ) ) | 
						
							| 137 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 138 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 139 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 140 | 139 | a1i | ⊢ ( 𝑗  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 141 |  | id | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℕ0 ) | 
						
							| 142 | 140 141 | nn0mulcld | ⊢ ( 𝑗  ∈  ℕ0  →  ( 2  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 143 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑗 )  ∈  ℕ0  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 144 | 142 143 | syl | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 145 | 5 144 | fmpti | ⊢ 𝐺 : ℕ0 ⟶ ℕ | 
						
							| 146 | 145 | a1i | ⊢ ( 𝜑  →  𝐺 : ℕ0 ⟶ ℕ ) | 
						
							| 147 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 148 | 147 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 149 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 150 | 148 149 | remulcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 151 |  | 1red | ⊢ ( 𝑘  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 152 | 149 151 | readdcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 153 | 148 152 | remulcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 154 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 155 | 154 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  2  ∈  ℝ+ ) | 
						
							| 156 | 149 | ltp1d | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 157 | 149 152 155 156 | ltmul2dd | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  𝑘 )  <  ( 2  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 158 | 150 153 151 157 | ltadd1dd | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 2  ·  𝑘 )  +  1 )  <  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 159 | 5 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  𝐺  =  ( 𝑗  ∈  ℕ0  ↦  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 160 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  𝑘 )  →  𝑗  =  𝑘 ) | 
						
							| 161 | 160 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  𝑘 )  →  ( 2  ·  𝑗 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 162 | 161 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  𝑘 )  →  ( ( 2  ·  𝑗 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 163 |  | id | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℕ0 ) | 
						
							| 164 |  | 2cnd | ⊢ ( 𝑘  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 165 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 166 | 164 165 | mulcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 167 |  | 1cnd | ⊢ ( 𝑘  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 168 | 166 167 | addcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 169 | 159 162 163 168 | fvmptd | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 170 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  ( 𝑘  +  1 ) )  →  𝑗  =  ( 𝑘  +  1 ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  ( 𝑘  +  1 ) )  →  ( 2  ·  𝑗 )  =  ( 2  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 172 | 171 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑗  =  ( 𝑘  +  1 ) )  →  ( ( 2  ·  𝑗 )  +  1 )  =  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 173 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 174 | 165 167 | addcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 175 | 164 174 | mulcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 176 | 175 167 | addcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 )  ∈  ℂ ) | 
						
							| 177 | 159 172 173 176 | fvmptd | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  =  ( ( 2  ·  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 178 | 158 169 177 | 3brtr4d | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐺 ‘ 𝑘 )  <  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 179 | 178 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  <  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 180 |  | eldifi | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  𝑛  ∈  ℕ ) | 
						
							| 181 | 180 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 182 |  | 1cnd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  1  ∈  ℂ ) | 
						
							| 183 | 182 | negcld | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  - 1  ∈  ℂ ) | 
						
							| 184 | 180 83 | syl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 185 | 183 184 | expcld | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 186 | 185 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 187 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 188 | 181 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 189 | 187 188 | expcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( 𝑇 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 190 | 181 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 191 | 181 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  𝑛  ≠  0 ) | 
						
							| 192 | 189 190 191 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 193 | 186 192 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 194 | 193 192 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 195 | 3 102 181 194 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 196 |  | eldifn | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  𝑛  ∈  ran  𝐺 ) | 
						
							| 197 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 198 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 199 | 139 198 | num0h | ⊢ 1  =  ( ( 2  ·  0 )  +  1 ) | 
						
							| 200 |  | oveq2 | ⊢ ( 𝑗  =  0  →  ( 2  ·  𝑗 )  =  ( 2  ·  0 ) ) | 
						
							| 201 | 200 | oveq1d | ⊢ ( 𝑗  =  0  →  ( ( 2  ·  𝑗 )  +  1 )  =  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 202 | 201 | eqeq2d | ⊢ ( 𝑗  =  0  →  ( 1  =  ( ( 2  ·  𝑗 )  +  1 )  ↔  1  =  ( ( 2  ·  0 )  +  1 ) ) ) | 
						
							| 203 | 202 | rspcev | ⊢ ( ( 0  ∈  ℕ0  ∧  1  =  ( ( 2  ·  0 )  +  1 ) )  →  ∃ 𝑗  ∈  ℕ0 1  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 204 | 197 199 203 | mp2an | ⊢ ∃ 𝑗  ∈  ℕ0 1  =  ( ( 2  ·  𝑗 )  +  1 ) | 
						
							| 205 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 206 | 5 | elrnmpt | ⊢ ( 1  ∈  ℂ  →  ( 1  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  ℕ0 1  =  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 207 | 205 206 | ax-mp | ⊢ ( 1  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  ℕ0 1  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 208 | 204 207 | mpbir | ⊢ 1  ∈  ran  𝐺 | 
						
							| 209 | 208 | a1i | ⊢ ( 𝑛  =  1  →  1  ∈  ran  𝐺 ) | 
						
							| 210 |  | eleq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ∈  ran  𝐺  ↔  1  ∈  ran  𝐺 ) ) | 
						
							| 211 | 209 210 | mpbird | ⊢ ( 𝑛  =  1  →  𝑛  ∈  ran  𝐺 ) | 
						
							| 212 | 196 211 | nsyl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  𝑛  =  1 ) | 
						
							| 213 |  | nn1m1nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  =  1  ∨  ( 𝑛  −  1 )  ∈  ℕ ) ) | 
						
							| 214 | 180 213 | syl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑛  =  1  ∨  ( 𝑛  −  1 )  ∈  ℕ ) ) | 
						
							| 215 | 214 | ord | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( ¬  𝑛  =  1  →  ( 𝑛  −  1 )  ∈  ℕ ) ) | 
						
							| 216 | 212 215 | mpd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑛  −  1 )  ∈  ℕ ) | 
						
							| 217 |  | nfcv | ⊢ Ⅎ 𝑗 ℕ | 
						
							| 218 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  ℕ0  ↦  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 219 | 5 218 | nfcxfr | ⊢ Ⅎ 𝑗 𝐺 | 
						
							| 220 | 219 | nfrn | ⊢ Ⅎ 𝑗 ran  𝐺 | 
						
							| 221 | 217 220 | nfdif | ⊢ Ⅎ 𝑗 ( ℕ  ∖  ran  𝐺 ) | 
						
							| 222 | 221 | nfcri | ⊢ Ⅎ 𝑗 𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) | 
						
							| 223 | 5 | elrnmpt | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑛  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  ℕ0 𝑛  =  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 224 | 196 223 | mtbid | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  ∃ 𝑗  ∈  ℕ0 𝑛  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 225 |  | ralnex | ⊢ ( ∀ 𝑗  ∈  ℕ0 ¬  𝑛  =  ( ( 2  ·  𝑗 )  +  1 )  ↔  ¬  ∃ 𝑗  ∈  ℕ0 𝑛  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 226 | 224 225 | sylibr | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ∀ 𝑗  ∈  ℕ0 ¬  𝑛  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 227 | 226 | r19.21bi | ⊢ ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℕ0 )  →  ¬  𝑛  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 228 | 227 | neqned | ⊢ ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℕ0 )  →  𝑛  ≠  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 229 | 228 | necomd | ⊢ ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  𝑛 ) | 
						
							| 230 | 229 | adantlr | ⊢ ( ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  ∧  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  𝑛 ) | 
						
							| 231 |  | simplr | ⊢ ( ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℤ ) | 
						
							| 232 |  | simpr | ⊢ ( ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  𝑗  ∈  ℕ0 ) | 
						
							| 233 | 180 | ad2antrr | ⊢ ( ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑛  ∈  ℕ ) | 
						
							| 234 | 147 | a1i | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  2  ∈  ℝ ) | 
						
							| 235 |  | simpl | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℤ ) | 
						
							| 236 | 235 | zred | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℝ ) | 
						
							| 237 | 234 236 | remulcld | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 238 |  | 0red | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 239 |  | 1red | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 240 |  | 2cnd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 241 | 236 | recnd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑗  ∈  ℂ ) | 
						
							| 242 | 240 241 | mulcomd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 2  ·  𝑗 )  =  ( 𝑗  ·  2 ) ) | 
						
							| 243 |  | simpr | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  𝑗  ∈  ℕ0 ) | 
						
							| 244 |  | elnn0z | ⊢ ( 𝑗  ∈  ℕ0  ↔  ( 𝑗  ∈  ℤ  ∧  0  ≤  𝑗 ) ) | 
						
							| 245 | 243 244 | sylnib | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  ( 𝑗  ∈  ℤ  ∧  0  ≤  𝑗 ) ) | 
						
							| 246 |  | nan | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  ( 𝑗  ∈  ℤ  ∧  0  ≤  𝑗 ) )  ↔  ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑗  ∈  ℤ )  →  ¬  0  ≤  𝑗 ) ) | 
						
							| 247 | 245 246 | mpbi | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑗  ∈  ℤ )  →  ¬  0  ≤  𝑗 ) | 
						
							| 248 | 247 | anabss1 | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  0  ≤  𝑗 ) | 
						
							| 249 | 236 238 | ltnled | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 𝑗  <  0  ↔  ¬  0  ≤  𝑗 ) ) | 
						
							| 250 | 248 249 | mpbird | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  𝑗  <  0 ) | 
						
							| 251 | 154 | a1i | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  2  ∈  ℝ+ ) | 
						
							| 252 | 251 | rpregt0d | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 253 |  | mulltgt0 | ⊢ ( ( ( 𝑗  ∈  ℝ  ∧  𝑗  <  0 )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝑗  ·  2 )  <  0 ) | 
						
							| 254 | 236 250 252 253 | syl21anc | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 𝑗  ·  2 )  <  0 ) | 
						
							| 255 | 242 254 | eqbrtrd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 2  ·  𝑗 )  <  0 ) | 
						
							| 256 | 237 238 239 255 | ltadd1dd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  <  ( 0  +  1 ) ) | 
						
							| 257 |  | 1cnd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 258 | 257 | addlidd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( 0  +  1 )  =  1 ) | 
						
							| 259 | 256 258 | breqtrd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  <  1 ) | 
						
							| 260 | 237 239 | readdcld | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 261 | 260 239 | ltnled | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑗 )  +  1 )  <  1  ↔  ¬  1  ≤  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 262 | 259 261 | mpbid | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  1  ≤  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 263 |  | nnge1 | ⊢ ( ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ  →  1  ≤  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 264 | 262 263 | nsyl | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  →  ¬  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 265 | 264 | adantr | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ¬  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 266 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 )  →  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 267 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 )  →  𝑛  ∈  ℕ ) | 
						
							| 268 | 266 267 | eqeltrd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 269 | 268 | adantll | ⊢ ( ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 270 | 265 269 | mtand | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ¬  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 271 | 270 | neqned | ⊢ ( ( ( 𝑗  ∈  ℤ  ∧  ¬  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  𝑛 ) | 
						
							| 272 | 231 232 233 271 | syl21anc | ⊢ ( ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  ∧  ¬  𝑗  ∈  ℕ0 )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  𝑛 ) | 
						
							| 273 | 230 272 | pm2.61dan | ⊢ ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  𝑛 ) | 
						
							| 274 | 273 | neneqd | ⊢ ( ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  ∧  𝑗  ∈  ℤ )  →  ¬  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 275 | 274 | ex | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑗  ∈  ℤ  →  ¬  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) ) | 
						
							| 276 | 222 275 | ralrimi | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ∀ 𝑗  ∈  ℤ ¬  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 277 |  | ralnex | ⊢ ( ∀ 𝑗  ∈  ℤ ¬  ( ( 2  ·  𝑗 )  +  1 )  =  𝑛  ↔  ¬  ∃ 𝑗  ∈  ℤ ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 278 | 276 277 | sylib | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  ∃ 𝑗  ∈  ℤ ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) | 
						
							| 279 | 180 | nnzd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  𝑛  ∈  ℤ ) | 
						
							| 280 |  | odd2np1 | ⊢ ( 𝑛  ∈  ℤ  →  ( ¬  2  ∥  𝑛  ↔  ∃ 𝑗  ∈  ℤ ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) ) | 
						
							| 281 | 279 280 | syl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( ¬  2  ∥  𝑛  ↔  ∃ 𝑗  ∈  ℤ ( ( 2  ·  𝑗 )  +  1 )  =  𝑛 ) ) | 
						
							| 282 | 278 281 | mtbird | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  ¬  2  ∥  𝑛 ) | 
						
							| 283 | 282 | notnotrd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  2  ∥  𝑛 ) | 
						
							| 284 | 180 | nncnd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  𝑛  ∈  ℂ ) | 
						
							| 285 | 284 182 | npcand | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 286 | 283 285 | breqtrrd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  2  ∥  ( ( 𝑛  −  1 )  +  1 ) ) | 
						
							| 287 | 184 | nn0zd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 𝑛  −  1 )  ∈  ℤ ) | 
						
							| 288 |  | oddp1even | ⊢ ( ( 𝑛  −  1 )  ∈  ℤ  →  ( ¬  2  ∥  ( 𝑛  −  1 )  ↔  2  ∥  ( ( 𝑛  −  1 )  +  1 ) ) ) | 
						
							| 289 | 287 288 | syl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( ¬  2  ∥  ( 𝑛  −  1 )  ↔  2  ∥  ( ( 𝑛  −  1 )  +  1 ) ) ) | 
						
							| 290 | 286 289 | mpbird | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ¬  2  ∥  ( 𝑛  −  1 ) ) | 
						
							| 291 |  | oexpneg | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝑛  −  1 )  ∈  ℕ  ∧  ¬  2  ∥  ( 𝑛  −  1 ) )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  =  - ( 1 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 292 | 182 216 290 291 | syl3anc | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  =  - ( 1 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 293 |  | 1exp | ⊢ ( ( 𝑛  −  1 )  ∈  ℤ  →  ( 1 ↑ ( 𝑛  −  1 ) )  =  1 ) | 
						
							| 294 | 287 293 | syl | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( 1 ↑ ( 𝑛  −  1 ) )  =  1 ) | 
						
							| 295 | 294 | negeqd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  - ( 1 ↑ ( 𝑛  −  1 ) )  =  - 1 ) | 
						
							| 296 | 292 295 | eqtrd | ⊢ ( 𝑛  ∈  ( ℕ  ∖  ran  𝐺 )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  =  - 1 ) | 
						
							| 297 | 296 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  =  - 1 ) | 
						
							| 298 | 297 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( - 1  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 299 | 298 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( ( - 1  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 300 | 192 | mulm1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( - 1  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) | 
						
							| 301 | 300 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( - 1  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 302 | 192 | negcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 303 | 302 192 | addcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  ( ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  +  - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 304 | 192 | negidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( ( 𝑇 ↑ 𝑛 )  /  𝑛 )  +  - ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  0 ) | 
						
							| 305 | 301 303 304 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( ( - 1  ·  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  +  ( ( 𝑇 ↑ 𝑛 )  /  𝑛 ) )  =  0 ) | 
						
							| 306 | 195 299 305 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℕ  ∖  ran  𝐺 ) )  →  ( 𝐹 ‘ 𝑛 )  =  0 ) | 
						
							| 307 | 113 112 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 308 | 3 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐹  =  ( 𝑗  ∈  ℕ  ↦  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  +  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) ) ) ) | 
						
							| 309 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 310 | 309 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( 𝑗  −  1 )  =  ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) ) | 
						
							| 311 | 310 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( - 1 ↑ ( 𝑗  −  1 ) )  =  ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) ) ) | 
						
							| 312 | 309 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( 𝑇 ↑ 𝑗 )  =  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 313 | 312 309 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 )  =  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 314 | 311 313 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  =  ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 315 | 314 313 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  ( ( 2  ·  𝑘 )  +  1 ) )  →  ( ( ( - 1 ↑ ( 𝑗  −  1 ) )  ·  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  +  ( ( 𝑇 ↑ 𝑗 )  /  𝑗 ) )  =  ( ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 316 | 139 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  2  ∈  ℕ0 ) | 
						
							| 317 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 318 | 316 317 | nn0mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 319 |  | nn0p1nn | ⊢ ( ( 2  ·  𝑘 )  ∈  ℕ0  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 320 | 318 319 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 321 | 167 | negcld | ⊢ ( 𝑘  ∈  ℕ0  →  - 1  ∈  ℂ ) | 
						
							| 322 | 166 167 | pncand | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 323 | 139 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 324 | 323 163 | nn0mulcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 325 | 322 324 | eqeltrd | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  ∈  ℕ0 ) | 
						
							| 326 | 321 325 | expcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ∈  ℂ ) | 
						
							| 327 | 326 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ∈  ℂ ) | 
						
							| 328 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑇  ∈  ℂ ) | 
						
							| 329 | 198 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  1  ∈  ℕ0 ) | 
						
							| 330 | 318 329 | nn0addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 ) | 
						
							| 331 | 328 330 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 332 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 333 | 165 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℂ ) | 
						
							| 334 | 332 333 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 335 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 336 | 334 335 | addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 337 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 338 | 147 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  2  ∈  ℝ ) | 
						
							| 339 | 149 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 340 | 338 339 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 341 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 342 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 343 | 342 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  2 ) | 
						
							| 344 | 317 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  𝑘 ) | 
						
							| 345 | 338 339 343 344 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  ( 2  ·  𝑘 ) ) | 
						
							| 346 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 347 | 346 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  <  1 ) | 
						
							| 348 | 340 341 345 347 | addgegt0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 349 | 337 348 | gtned | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2  ·  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 350 | 331 336 349 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 351 | 327 350 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 352 | 351 350 | addcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 353 | 308 315 320 352 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 354 | 322 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 355 | 354 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  =  ( - 1 ↑ ( 2  ·  𝑘 ) ) ) | 
						
							| 356 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 357 |  | m1expeven | ⊢ ( 𝑘  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑘 ) )  =  1 ) | 
						
							| 358 | 356 357 | syl | ⊢ ( 𝑘  ∈  ℕ0  →  ( - 1 ↑ ( 2  ·  𝑘 ) )  =  1 ) | 
						
							| 359 | 358 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ ( 2  ·  𝑘 ) )  =  1 ) | 
						
							| 360 | 355 359 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  =  1 ) | 
						
							| 361 | 360 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 1  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 362 | 350 | mullidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 1  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 363 | 361 362 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 364 | 363 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 365 | 350 | 2timesd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 366 | 331 336 349 | divrec2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 367 | 366 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 368 | 364 365 367 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( - 1 ↑ ( ( ( 2  ·  𝑘 )  +  1 )  −  1 ) )  ·  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  +  ( ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 369 | 353 368 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  =  ( 𝐹 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 370 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐻  =  ( 𝑗  ∈  ℕ0  ↦  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) ) ) ) | 
						
							| 371 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  𝑗  =  𝑘 ) | 
						
							| 372 | 371 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( 2  ·  𝑗 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 373 | 372 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( ( 2  ·  𝑗 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 374 | 373 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 375 | 373 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( 𝑇 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  =  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 376 | 374 375 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑗 )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 377 | 376 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  =  𝑘 )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 378 | 336 349 | reccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 379 | 378 331 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 380 | 332 379 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 381 | 370 377 317 380 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  ( 2  ·  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝑇 ↑ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 382 | 198 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  1  ∈  ℕ0 ) | 
						
							| 383 | 324 382 | nn0addcld | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 ) | 
						
							| 384 | 159 162 163 383 | fvmptd | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 385 | 384 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 386 | 385 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 387 | 369 381 386 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 388 | 137 8 138 9 146 179 306 307 387 | isercoll2 | ⊢ ( 𝜑  →  ( seq 0 (  +  ,  𝐻 )  ⇝  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) )  ↔  seq 1 (  +  ,  𝐹 )  ⇝  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) ) ) ) | 
						
							| 389 | 136 388 | mpbird | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) ) ) | 
						
							| 390 | 55 18 | resubcld | ⊢ ( 𝜑  →  ( 1  −  𝑇 )  ∈  ℝ ) | 
						
							| 391 | 19 | subidd | ⊢ ( 𝜑  →  ( 𝑇  −  𝑇 )  =  0 ) | 
						
							| 392 | 391 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 𝑇  −  𝑇 ) ) | 
						
							| 393 | 18 55 18 131 | ltsub1dd | ⊢ ( 𝜑  →  ( 𝑇  −  𝑇 )  <  ( 1  −  𝑇 ) ) | 
						
							| 394 | 392 393 | eqbrtrd | ⊢ ( 𝜑  →  0  <  ( 1  −  𝑇 ) ) | 
						
							| 395 | 390 394 | elrpd | ⊢ ( 𝜑  →  ( 1  −  𝑇 )  ∈  ℝ+ ) | 
						
							| 396 | 125 395 | relogdivd | ⊢ ( 𝜑  →  ( log ‘ ( ( 1  +  𝑇 )  /  ( 1  −  𝑇 ) ) )  =  ( ( log ‘ ( 1  +  𝑇 ) )  −  ( log ‘ ( 1  −  𝑇 ) ) ) ) | 
						
							| 397 | 389 396 | breqtrrd | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( log ‘ ( ( 1  +  𝑇 )  /  ( 1  −  𝑇 ) ) ) ) |