| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logtayl2.s |
⊢ 𝑆 = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 3 |
|
1zzd |
⊢ ( 𝐴 ∈ 𝑆 → 1 ∈ ℤ ) |
| 4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 5 |
4
|
a1i |
⊢ ( 𝐴 ∈ 𝑆 → - 1 ∈ ℂ ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝑆 ↔ 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 8 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 9 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 10 |
|
elbl |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) ) |
| 11 |
8 6 9 10
|
mp3an |
⊢ ( 𝐴 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) |
| 12 |
7 11
|
bitri |
⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℂ ∧ ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) ) |
| 13 |
12
|
simplbi |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ ) |
| 14 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
| 15 |
6 13 14
|
sylancr |
⊢ ( 𝐴 ∈ 𝑆 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 16 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 17 |
16
|
cnmetdval |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝐴 ) = ( abs ‘ ( 1 − 𝐴 ) ) ) |
| 18 |
6 13 17
|
sylancr |
⊢ ( 𝐴 ∈ 𝑆 → ( 1 ( abs ∘ − ) 𝐴 ) = ( abs ‘ ( 1 − 𝐴 ) ) ) |
| 19 |
12
|
simprbi |
⊢ ( 𝐴 ∈ 𝑆 → ( 1 ( abs ∘ − ) 𝐴 ) < 1 ) |
| 20 |
18 19
|
eqbrtrrd |
⊢ ( 𝐴 ∈ 𝑆 → ( abs ‘ ( 1 − 𝐴 ) ) < 1 ) |
| 21 |
|
logtayl |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( 1 − 𝐴 ) ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) ) |
| 22 |
15 20 21
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) ) |
| 23 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 − 𝐴 ) ) = 𝐴 ) |
| 24 |
6 13 23
|
sylancr |
⊢ ( 𝐴 ∈ 𝑆 → ( 1 − ( 1 − 𝐴 ) ) = 𝐴 ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝐴 ∈ 𝑆 → ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) = ( log ‘ 𝐴 ) ) |
| 26 |
25
|
negeqd |
⊢ ( 𝐴 ∈ 𝑆 → - ( log ‘ ( 1 − ( 1 − 𝐴 ) ) ) = - ( log ‘ 𝐴 ) ) |
| 27 |
22 26
|
breqtrd |
⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ 𝐴 ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 1 − 𝐴 ) ↑ 𝑘 ) = ( ( 1 − 𝐴 ) ↑ 𝑛 ) ) |
| 29 |
|
id |
⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) |
| 30 |
28 29
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 31 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) |
| 32 |
|
ovex |
⊢ ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ∈ V |
| 33 |
30 31 32
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 35 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 36 |
|
expcl |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) ∈ ℂ ) |
| 37 |
15 35 36
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) ∈ ℂ ) |
| 38 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 40 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 42 |
37 39 41
|
divcld |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 43 |
34 42
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 44 |
37 39 41
|
divnegd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) = ( - ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 45 |
42
|
mulm1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = - ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 46 |
35
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 47 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
| 48 |
4 46 47
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
| 49 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) |
| 50 |
13 6 49
|
sylancl |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 51 |
|
expcl |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 − 1 ) ↑ 𝑛 ) ∈ ℂ ) |
| 52 |
50 35 51
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − 1 ) ↑ 𝑛 ) ∈ ℂ ) |
| 53 |
48 52
|
mulneg1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = - ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 54 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - 1 ∈ ℂ ) |
| 55 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 56 |
55
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - 1 ≠ 0 ) |
| 57 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 59 |
54 56 58
|
expm1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = ( ( - 1 ↑ 𝑛 ) / - 1 ) ) |
| 60 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 61 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 62 |
61
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → 1 ≠ 0 ) |
| 63 |
48 60 62
|
divneg2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( - 1 ↑ 𝑛 ) / 1 ) = ( ( - 1 ↑ 𝑛 ) / - 1 ) ) |
| 64 |
48
|
div1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ 𝑛 ) / 1 ) = ( - 1 ↑ 𝑛 ) ) |
| 65 |
64
|
negeqd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( - 1 ↑ 𝑛 ) / 1 ) = - ( - 1 ↑ 𝑛 ) ) |
| 66 |
59 63 65
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( - 1 ↑ 𝑛 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = ( - ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 68 |
50
|
mulm1d |
⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · ( 𝐴 − 1 ) ) = - ( 𝐴 − 1 ) ) |
| 69 |
|
negsubdi2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐴 − 1 ) = ( 1 − 𝐴 ) ) |
| 70 |
13 6 69
|
sylancl |
⊢ ( 𝐴 ∈ 𝑆 → - ( 𝐴 − 1 ) = ( 1 − 𝐴 ) ) |
| 71 |
68 70
|
eqtr2d |
⊢ ( 𝐴 ∈ 𝑆 → ( 1 − 𝐴 ) = ( - 1 · ( 𝐴 − 1 ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) ) |
| 74 |
|
mulexp |
⊢ ( ( - 1 ∈ ℂ ∧ ( 𝐴 − 1 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 75 |
4 50 35 74
|
mp3an3an |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 · ( 𝐴 − 1 ) ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 1 − 𝐴 ) ↑ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 77 |
76
|
negeqd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → - ( ( 1 − 𝐴 ) ↑ 𝑛 ) = - ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 78 |
53 67 77
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = - ( ( 1 − 𝐴 ) ↑ 𝑛 ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) = ( - ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) |
| 80 |
44 45 79
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) ) |
| 81 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 83 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 84 |
4 82 83
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 85 |
84 52 39 41
|
div23d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) / 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 86 |
80 85
|
eqtr2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) = ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) |
| 87 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) |
| 88 |
87
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( - 1 ↑ ( 𝑘 − 1 ) ) = ( - 1 ↑ ( 𝑛 − 1 ) ) ) |
| 89 |
88 29
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) ) |
| 90 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 − 1 ) ↑ 𝑘 ) = ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) |
| 91 |
89 90
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 92 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) |
| 93 |
|
ovex |
⊢ ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ∈ V |
| 94 |
91 92 93
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) / 𝑛 ) · ( ( 𝐴 − 1 ) ↑ 𝑛 ) ) ) |
| 96 |
34
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( - 1 · ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) = ( - 1 · ( ( ( 1 − 𝐴 ) ↑ 𝑛 ) / 𝑛 ) ) ) |
| 97 |
86 95 96
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( - 1 · ( ( 𝑘 ∈ ℕ ↦ ( ( ( 1 − 𝐴 ) ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) ) |
| 98 |
2 3 5 27 43 97
|
isermulc2 |
⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ) ⇝ ( - 1 · - ( log ‘ 𝐴 ) ) ) |
| 99 |
1
|
dvlog2lem |
⊢ 𝑆 ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 100 |
99
|
sseli |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 101 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 102 |
101
|
logdmn0 |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ≠ 0 ) |
| 103 |
100 102
|
syl |
⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ≠ 0 ) |
| 104 |
13 103
|
logcld |
⊢ ( 𝐴 ∈ 𝑆 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 105 |
104
|
negcld |
⊢ ( 𝐴 ∈ 𝑆 → - ( log ‘ 𝐴 ) ∈ ℂ ) |
| 106 |
105
|
mulm1d |
⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · - ( log ‘ 𝐴 ) ) = - - ( log ‘ 𝐴 ) ) |
| 107 |
104
|
negnegd |
⊢ ( 𝐴 ∈ 𝑆 → - - ( log ‘ 𝐴 ) = ( log ‘ 𝐴 ) ) |
| 108 |
106 107
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑆 → ( - 1 · - ( log ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 109 |
98 108
|
breqtrd |
⊢ ( 𝐴 ∈ 𝑆 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) / 𝑘 ) · ( ( 𝐴 − 1 ) ↑ 𝑘 ) ) ) ) ⇝ ( log ‘ 𝐴 ) ) |