| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem6.1 |  |-  H = ( j e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) | 
						
							| 2 |  | eqid |  |-  ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) = ( j e. NN |-> ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) | 
						
							| 3 |  | eqid |  |-  ( j e. NN |-> ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) = ( j e. NN |-> ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) | 
						
							| 4 |  | eqid |  |-  ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) + ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) = ( j e. NN |-> ( ( ( -u 1 ^ ( j - 1 ) ) x. ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) + ( ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ j ) / j ) ) ) | 
						
							| 5 |  | eqid |  |-  ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) = ( j e. NN0 |-> ( ( 2 x. j ) + 1 ) ) | 
						
							| 6 |  | 2re |  |-  2 e. RR | 
						
							| 7 | 6 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 8 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 9 | 7 8 | remulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR ) | 
						
							| 10 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 11 | 10 | a1i |  |-  ( N e. NN -> 0 <_ 2 ) | 
						
							| 12 |  | 0red |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 13 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 14 | 12 8 13 | ltled |  |-  ( N e. NN -> 0 <_ N ) | 
						
							| 15 | 7 8 11 14 | mulge0d |  |-  ( N e. NN -> 0 <_ ( 2 x. N ) ) | 
						
							| 16 | 9 15 | ge0p1rpd |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR+ ) | 
						
							| 17 | 16 | rpreccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR+ ) | 
						
							| 18 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 19 | 18 | renegcld |  |-  ( N e. NN -> -u 1 e. RR ) | 
						
							| 20 | 17 | rpred |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 21 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 22 | 21 | a1i |  |-  ( N e. NN -> -u 1 < 0 ) | 
						
							| 23 | 17 | rpgt0d |  |-  ( N e. NN -> 0 < ( 1 / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 24 | 19 12 20 22 23 | lttrd |  |-  ( N e. NN -> -u 1 < ( 1 / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 25 |  | 1rp |  |-  1 e. RR+ | 
						
							| 26 | 25 | a1i |  |-  ( N e. NN -> 1 e. RR+ ) | 
						
							| 27 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 28 | 27 | div1d |  |-  ( N e. NN -> ( 1 / 1 ) = 1 ) | 
						
							| 29 |  | 2rp |  |-  2 e. RR+ | 
						
							| 30 | 29 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 31 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 32 | 30 31 | rpmulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR+ ) | 
						
							| 33 | 18 32 | ltaddrp2d |  |-  ( N e. NN -> 1 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 34 | 28 33 | eqbrtrd |  |-  ( N e. NN -> ( 1 / 1 ) < ( ( 2 x. N ) + 1 ) ) | 
						
							| 35 | 26 16 34 | ltrec1d |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) < 1 ) | 
						
							| 36 | 20 18 | absltd |  |-  ( N e. NN -> ( ( abs ` ( 1 / ( ( 2 x. N ) + 1 ) ) ) < 1 <-> ( -u 1 < ( 1 / ( ( 2 x. N ) + 1 ) ) /\ ( 1 / ( ( 2 x. N ) + 1 ) ) < 1 ) ) ) | 
						
							| 37 | 24 35 36 | mpbir2and |  |-  ( N e. NN -> ( abs ` ( 1 / ( ( 2 x. N ) + 1 ) ) ) < 1 ) | 
						
							| 38 | 2 3 4 1 5 17 37 | stirlinglem5 |  |-  ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) ) | 
						
							| 39 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 40 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 41 | 39 40 | mulcld |  |-  ( N e. NN -> ( 2 x. N ) e. CC ) | 
						
							| 42 | 41 27 | addcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 43 | 9 18 | readdcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 44 |  | 2pos |  |-  0 < 2 | 
						
							| 45 | 44 | a1i |  |-  ( N e. NN -> 0 < 2 ) | 
						
							| 46 | 7 8 45 13 | mulgt0d |  |-  ( N e. NN -> 0 < ( 2 x. N ) ) | 
						
							| 47 | 9 | ltp1d |  |-  ( N e. NN -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) | 
						
							| 48 | 12 9 43 46 47 | lttrd |  |-  ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 49 | 48 | gt0ne0d |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 50 | 42 49 | dividd |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = 1 ) | 
						
							| 51 | 50 | eqcomd |  |-  ( N e. NN -> 1 = ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( N e. NN -> ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 53 | 51 | oveq1d |  |-  ( N e. NN -> ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 54 | 52 53 | oveq12d |  |-  ( N e. NN -> ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) | 
						
							| 55 | 42 27 42 49 | divdird |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 56 | 55 | eqcomd |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 57 | 42 27 42 49 | divsubdird |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 58 | 57 | eqcomd |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 59 | 56 58 | oveq12d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 60 | 41 27 27 | addassd |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) | 
						
							| 61 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 62 | 61 | a1i |  |-  ( N e. NN -> ( 1 + 1 ) = 2 ) | 
						
							| 63 | 62 | oveq2d |  |-  ( N e. NN -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( 2 x. N ) + 2 ) ) | 
						
							| 64 | 39 | mulridd |  |-  ( N e. NN -> ( 2 x. 1 ) = 2 ) | 
						
							| 65 | 64 | eqcomd |  |-  ( N e. NN -> 2 = ( 2 x. 1 ) ) | 
						
							| 66 | 65 | oveq2d |  |-  ( N e. NN -> ( ( 2 x. N ) + 2 ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) ) | 
						
							| 67 | 39 40 27 | adddid |  |-  ( N e. NN -> ( 2 x. ( N + 1 ) ) = ( ( 2 x. N ) + ( 2 x. 1 ) ) ) | 
						
							| 68 | 66 67 | eqtr4d |  |-  ( N e. NN -> ( ( 2 x. N ) + 2 ) = ( 2 x. ( N + 1 ) ) ) | 
						
							| 69 | 60 63 68 | 3eqtrd |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( 2 x. ( N + 1 ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 71 | 41 27 | pncand |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) - 1 ) = ( 2 x. N ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) = ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 73 | 70 72 | oveq12d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( ( 2 x. N ) + 1 ) - 1 ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 74 | 59 73 | eqtrd |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 75 | 40 27 | addcld |  |-  ( N e. NN -> ( N + 1 ) e. CC ) | 
						
							| 76 | 39 75 | mulcld |  |-  ( N e. NN -> ( 2 x. ( N + 1 ) ) e. CC ) | 
						
							| 77 | 46 | gt0ne0d |  |-  ( N e. NN -> ( 2 x. N ) =/= 0 ) | 
						
							| 78 | 76 41 42 77 49 | divcan7d |  |-  ( N e. NN -> ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) ) | 
						
							| 79 | 45 | gt0ne0d |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 80 | 13 | gt0ne0d |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 81 | 39 39 75 40 79 80 | divmuldivd |  |-  ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) ) | 
						
							| 82 | 81 | eqcomd |  |-  ( N e. NN -> ( ( 2 x. ( N + 1 ) ) / ( 2 x. N ) ) = ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) ) | 
						
							| 83 | 39 79 | dividd |  |-  ( N e. NN -> ( 2 / 2 ) = 1 ) | 
						
							| 84 | 83 | oveq1d |  |-  ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( 1 x. ( ( N + 1 ) / N ) ) ) | 
						
							| 85 | 75 40 80 | divcld |  |-  ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) | 
						
							| 86 | 85 | mullidd |  |-  ( N e. NN -> ( 1 x. ( ( N + 1 ) / N ) ) = ( ( N + 1 ) / N ) ) | 
						
							| 87 | 84 86 | eqtrd |  |-  ( N e. NN -> ( ( 2 / 2 ) x. ( ( N + 1 ) / N ) ) = ( ( N + 1 ) / N ) ) | 
						
							| 88 | 78 82 87 | 3eqtrd |  |-  ( N e. NN -> ( ( ( 2 x. ( N + 1 ) ) / ( ( 2 x. N ) + 1 ) ) / ( ( 2 x. N ) / ( ( 2 x. N ) + 1 ) ) ) = ( ( N + 1 ) / N ) ) | 
						
							| 89 | 54 74 88 | 3eqtrd |  |-  ( N e. NN -> ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( N + 1 ) / N ) ) | 
						
							| 90 | 89 | fveq2d |  |-  ( N e. NN -> ( log ` ( ( 1 + ( 1 / ( ( 2 x. N ) + 1 ) ) ) / ( 1 - ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) ) = ( log ` ( ( N + 1 ) / N ) ) ) | 
						
							| 91 | 38 90 | breqtrd |  |-  ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( N + 1 ) / N ) ) ) |