Metamath Proof Explorer


Theorem stirlinglem10

Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole B sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem10.1 A=nn!2nnen
stirlinglem10.2 B=nlogAn
stirlinglem10.4 K=k12k+112 N+12k
stirlinglem10.5 L=k12 N+12k
Assertion stirlinglem10 NBNBN+1141NN+1

Proof

Step Hyp Ref Expression
1 stirlinglem10.1 A=nn!2nnen
2 stirlinglem10.2 B=nlogAn
3 stirlinglem10.4 K=k12k+112 N+12k
4 stirlinglem10.5 L=k12 N+12k
5 nnuz =1
6 1zzd N1
7 eqid n1+2n2logn+1n1=n1+2n2logn+1n1
8 1 2 7 3 stirlinglem9 Nseq1+KBNBN+1
9 2cnd N2
10 nncn NN
11 9 10 mulcld N2 N
12 1cnd N1
13 11 12 addcld N2 N+1
14 13 sqcld N2 N+12
15 0red N0
16 1red N1
17 2re 2
18 17 a1i N2
19 nnre NN
20 18 19 remulcld N2 N
21 20 16 readdcld N2 N+1
22 0lt1 0<1
23 22 a1i N0<1
24 2rp 2+
25 24 a1i N2+
26 nnrp NN+
27 25 26 rpmulcld N2 N+
28 16 27 ltaddrp2d N1<2 N+1
29 15 16 21 23 28 lttrd N0<2 N+1
30 29 gt0ne0d N2 N+10
31 2z 2
32 31 a1i N2
33 13 30 32 expne0d N2 N+120
34 14 33 reccld N12 N+12
35 16 renegcld N1
36 21 resqcld N2 N+12
37 36 33 rereccld N12 N+12
38 1re 1
39 lt0neg2 10<11<0
40 38 39 ax-mp 0<11<0
41 23 40 sylib N1<0
42 21 30 sqgt0d N0<2 N+12
43 36 42 recgt0d N0<12 N+12
44 35 15 37 41 43 lttrd N1<12 N+12
45 2nn 2
46 45 a1i N2
47 expgt1 2 N+121<2 N+11<2 N+12
48 21 46 28 47 syl3anc N1<2 N+12
49 36 42 elrpd N2 N+12+
50 49 recgt1d N1<2 N+1212 N+12<1
51 48 50 mpbid N12 N+12<1
52 37 16 absltd N12 N+12<11<12 N+1212 N+12<1
53 44 51 52 mpbir2and N12 N+12<1
54 1nn0 10
55 54 a1i N10
56 4 a1i Nj1L=k12 N+12k
57 simpr Nj1k=jk=j
58 57 oveq2d Nj1k=j12 N+12k=12 N+12j
59 elnnuz jj1
60 59 biimpri j1j
61 60 adantl Nj1j
62 34 adantr Nj112 N+12
63 61 nnnn0d Nj1j0
64 62 63 expcld Nj112 N+12j
65 56 58 61 64 fvmptd Nj1Lj=12 N+12j
66 34 53 55 65 geolim2 Nseq1+L12 N+121112 N+12
67 34 exp1d N12 N+121=12 N+12
68 14 33 dividd N2 N+122 N+12=1
69 68 eqcomd N1=2 N+122 N+12
70 69 oveq1d N112 N+12=2 N+122 N+1212 N+12
71 49 rpcnne0d N2 N+122 N+120
72 divsubdir 2 N+1212 N+122 N+1202 N+1212 N+12=2 N+122 N+1212 N+12
73 14 12 71 72 syl3anc N2 N+1212 N+12=2 N+122 N+1212 N+12
74 ax-1cn 1
75 binom2 2 N12 N+12=2 N2+22 N1+12
76 11 74 75 sylancl N2 N+12=2 N2+22 N1+12
77 76 oveq1d N2 N+121=2 N2+22 N1+12-1
78 9 10 sqmuld N2 N2=22N2
79 sq2 22=4
80 79 a1i N22=4
81 80 oveq1d N22N2=4N2
82 78 81 eqtrd N2 N2=4N2
83 11 mulridd N2 N1=2 N
84 83 oveq2d N22 N1=22 N
85 9 9 10 mulassd N22 N=22 N
86 2t2e4 22=4
87 86 a1i N22=4
88 87 oveq1d N22 N=4 N
89 84 85 88 3eqtr2d N22 N1=4 N
90 82 89 oveq12d N2 N2+22 N1=4N2+4 N
91 4cn 4
92 91 a1i N4
93 10 sqcld NN2
94 92 93 10 adddid N4N2+N=4N2+4 N
95 10 sqvald NN2= N N
96 10 mulridd N N1=N
97 96 eqcomd NN= N1
98 95 97 oveq12d NN2+N= N N+ N1
99 10 10 12 adddid NNN+1= N N+ N1
100 98 99 eqtr4d NN2+N=NN+1
101 100 oveq2d N4N2+N=4NN+1
102 90 94 101 3eqtr2d N2 N2+22 N1=4NN+1
103 sq1 12=1
104 103 a1i N12=1
105 102 104 oveq12d N2 N2+22 N1+12=4NN+1+1
106 105 oveq1d N2 N2+22 N1+12-1=4NN+1+1-1
107 10 12 addcld NN+1
108 10 107 mulcld NNN+1
109 92 108 mulcld N4NN+1
110 109 12 pncand N4NN+1+1-1=4NN+1
111 77 106 110 3eqtrd N2 N+121=4NN+1
112 111 oveq1d N2 N+1212 N+12=4NN+12 N+12
113 70 73 112 3eqtr2d N112 N+12=4NN+12 N+12
114 67 113 oveq12d N12 N+121112 N+12=12 N+124NN+12 N+12
115 4pos 0<4
116 115 a1i N0<4
117 116 gt0ne0d N40
118 nnne0 NN0
119 19 16 readdcld NN+1
120 nngt0 N0<N
121 19 ltp1d NN<N+1
122 15 19 119 120 121 lttrd N0<N+1
123 122 gt0ne0d NN+10
124 10 107 118 123 mulne0d NNN+10
125 92 108 117 124 mulne0d N4NN+10
126 12 14 109 14 33 33 125 divdivdivd N12 N+124NN+12 N+12=12 N+122 N+124NN+1
127 12 14 mulcomd N12 N+12=2 N+121
128 127 oveq1d N12 N+122 N+124NN+1=2 N+1212 N+124NN+1
129 12 mulridd N11=1
130 129 eqcomd N1=11
131 130 oveq1d N14NN+1=114NN+1
132 12 92 12 108 117 124 divmuldivd N141NN+1=114NN+1
133 131 132 eqtr4d N14NN+1=141NN+1
134 68 133 oveq12d N2 N+122 N+1214NN+1=1141NN+1
135 14 14 12 109 33 125 divmuldivd N2 N+122 N+1214NN+1=2 N+1212 N+124NN+1
136 92 117 reccld N14
137 108 124 reccld N1NN+1
138 136 137 mulcld N141NN+1
139 138 mullidd N1141NN+1=141NN+1
140 134 135 139 3eqtr3d N2 N+1212 N+124NN+1=141NN+1
141 126 128 140 3eqtrd N12 N+124NN+12 N+12=141NN+1
142 114 141 eqtrd N12 N+121112 N+12=141NN+1
143 66 142 breqtrd Nseq1+L141NN+1
144 59 biimpi jj1
145 144 adantl Njj1
146 oveq2 k=n2k=2n
147 146 oveq1d k=n2k+1=2n+1
148 147 oveq2d k=n12k+1=12n+1
149 146 oveq2d k=n12 N+12k=12 N+12n
150 148 149 oveq12d k=n12k+112 N+12k=12n+112 N+12n
151 elfznn n1jn
152 151 adantl Nn1jn
153 2cnd Nn1j2
154 152 nncnd Nn1jn
155 153 154 mulcld Nn1j2n
156 1cnd Nn1j1
157 155 156 addcld Nn1j2n+1
158 0red n0
159 1red n1
160 17 a1i n2
161 nnre nn
162 160 161 remulcld n2n
163 162 159 readdcld n2n+1
164 22 a1i n0<1
165 24 a1i n2+
166 nnrp nn+
167 165 166 rpmulcld n2n+
168 159 167 ltaddrp2d n1<2n+1
169 158 159 163 164 168 lttrd n0<2n+1
170 151 169 syl n1j0<2n+1
171 170 gt0ne0d n1j2n+10
172 171 adantl Nn1j2n+10
173 157 172 reccld Nn1j12n+1
174 10 adantr Nn1jN
175 153 174 mulcld Nn1j2 N
176 175 156 addcld Nn1j2 N+1
177 30 adantr Nn1j2 N+10
178 176 177 reccld Nn1j12 N+1
179 2nn0 20
180 179 a1i Nn1j20
181 152 nnnn0d Nn1jn0
182 180 181 nn0mulcld Nn1j2n0
183 178 182 expcld Nn1j12 N+12n
184 173 183 mulcld Nn1j12n+112 N+12n
185 3 150 152 184 fvmptd3 Nn1jKn=12n+112 N+12n
186 185 adantlr Njn1jKn=12n+112 N+12n
187 169 gt0ne0d n2n+10
188 163 187 rereccld n12n+1
189 151 188 syl n1j12n+1
190 189 adantl Njn1j12n+1
191 21 30 rereccld N12 N+1
192 191 adantr Nn1j12 N+1
193 192 182 reexpcld Nn1j12 N+12n
194 193 adantlr Njn1j12 N+12n
195 190 194 remulcld Njn1j12n+112 N+12n
196 186 195 eqeltrd Njn1jKn
197 readdcl nin+i
198 197 adantl Njnin+i
199 145 196 198 seqcl Njseq1+Kj
200 oveq2 k=n12 N+12k=12 N+12n
201 34 adantr Nn1j12 N+12
202 201 181 expcld Nn1j12 N+12n
203 4 200 152 202 fvmptd3 Nn1jLn=12 N+12n
204 37 adantr Nn1j12 N+12
205 204 181 reexpcld Nn1j12 N+12n
206 203 205 eqeltrd Nn1jLn
207 206 adantlr Njn1jLn
208 145 207 198 seqcl Njseq1+Lj
209 31 a1i n1j2
210 elfzelz n1jn
211 209 210 zmulcld n1j2n
212 1exp 2n12n=1
213 211 212 syl n1j12n=1
214 1exp n1n=1
215 210 214 syl n1j1n=1
216 213 215 eqtr4d n1j12n=1n
217 216 adantl Nn1j12n=1n
218 176 181 180 expmuld Nn1j2 N+12n=2 N+12n
219 217 218 oveq12d Nn1j12n2 N+12n=1n2 N+12n
220 156 176 177 182 expdivd Nn1j12 N+12n=12n2 N+12n
221 176 sqcld Nn1j2 N+12
222 31 a1i Nn1j2
223 176 177 222 expne0d Nn1j2 N+120
224 156 221 223 181 expdivd Nn1j12 N+12n=1n2 N+12n
225 219 220 224 3eqtr4d Nn1j12 N+12n=12 N+12n
226 225 oveq2d Nn1j12n+112 N+12n=12n+112 N+12n
227 1rp 1+
228 227 a1i Nn1j1+
229 17 a1i Nn1j2
230 152 nnred Nn1jn
231 229 230 remulcld Nn1j2n
232 180 nn0ge0d Nn1j02
233 181 nn0ge0d Nn1j0n
234 229 230 232 233 mulge0d Nn1j02n
235 231 234 ge0p1rpd Nn1j2n+1+
236 1red Nn1j1
237 228 rpge0d Nn1j01
238 159 163 168 ltled n12n+1
239 151 238 syl n1j12n+1
240 239 adantl Nn1j12n+1
241 228 235 236 237 240 lediv2ad Nn1j12n+111
242 156 div1d Nn1j11=1
243 241 242 breqtrd Nn1j12n+11
244 152 188 syl Nn1j12n+1
245 19 adantr Nn1jN
246 229 245 remulcld Nn1j2 N
247 15 19 120 ltled N0N
248 247 adantr Nn1j0N
249 229 245 232 248 mulge0d Nn1j02 N
250 246 249 ge0p1rpd Nn1j2 N+1+
251 250 222 rpexpcld Nn1j2 N+12+
252 251 rpreccld Nn1j12 N+12+
253 210 adantl Nn1jn
254 252 253 rpexpcld Nn1j12 N+12n+
255 244 236 254 lemul1d Nn1j12n+1112n+112 N+12n112 N+12n
256 243 255 mpbid Nn1j12n+112 N+12n112 N+12n
257 202 mullidd Nn1j112 N+12n=12 N+12n
258 256 257 breqtrd Nn1j12n+112 N+12n12 N+12n
259 226 258 eqbrtrd Nn1j12n+112 N+12n12 N+12n
260 259 185 203 3brtr4d Nn1jKnLn
261 260 adantlr Njn1jKnLn
262 145 196 207 261 serle Njseq1+Kjseq1+Lj
263 5 6 8 143 199 208 262 climle NBNBN+1141NN+1