| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem10.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem10.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 |  | stirlinglem10.4 |  |-  K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) | 
						
							| 4 |  | stirlinglem10.5 |  |-  L = ( k e. NN |-> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ k ) ) | 
						
							| 5 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 6 |  | 1zzd |  |-  ( N e. NN -> 1 e. ZZ ) | 
						
							| 7 |  | eqid |  |-  ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) | 
						
							| 8 | 1 2 7 3 | stirlinglem9 |  |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) | 
						
							| 9 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 10 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 11 | 9 10 | mulcld |  |-  ( N e. NN -> ( 2 x. N ) e. CC ) | 
						
							| 12 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 13 | 11 12 | addcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 14 | 13 | sqcld |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. CC ) | 
						
							| 15 |  | 0red |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 16 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 17 |  | 2re |  |-  2 e. RR | 
						
							| 18 | 17 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 19 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 20 | 18 19 | remulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR ) | 
						
							| 21 | 20 16 | readdcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 22 |  | 0lt1 |  |-  0 < 1 | 
						
							| 23 | 22 | a1i |  |-  ( N e. NN -> 0 < 1 ) | 
						
							| 24 |  | 2rp |  |-  2 e. RR+ | 
						
							| 25 | 24 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 26 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 27 | 25 26 | rpmulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR+ ) | 
						
							| 28 | 16 27 | ltaddrp2d |  |-  ( N e. NN -> 1 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 29 | 15 16 21 23 28 | lttrd |  |-  ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 30 | 29 | gt0ne0d |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 31 |  | 2z |  |-  2 e. ZZ | 
						
							| 32 | 31 | a1i |  |-  ( N e. NN -> 2 e. ZZ ) | 
						
							| 33 | 13 30 32 | expne0d |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) =/= 0 ) | 
						
							| 34 | 14 33 | reccld |  |-  ( N e. NN -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. CC ) | 
						
							| 35 | 16 | renegcld |  |-  ( N e. NN -> -u 1 e. RR ) | 
						
							| 36 | 21 | resqcld |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. RR ) | 
						
							| 37 | 36 33 | rereccld |  |-  ( N e. NN -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. RR ) | 
						
							| 38 |  | 1re |  |-  1 e. RR | 
						
							| 39 |  | lt0neg2 |  |-  ( 1 e. RR -> ( 0 < 1 <-> -u 1 < 0 ) ) | 
						
							| 40 | 38 39 | ax-mp |  |-  ( 0 < 1 <-> -u 1 < 0 ) | 
						
							| 41 | 23 40 | sylib |  |-  ( N e. NN -> -u 1 < 0 ) | 
						
							| 42 | 21 30 | sqgt0d |  |-  ( N e. NN -> 0 < ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) | 
						
							| 43 | 36 42 | recgt0d |  |-  ( N e. NN -> 0 < ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 44 | 35 15 37 41 43 | lttrd |  |-  ( N e. NN -> -u 1 < ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 45 |  | 2nn |  |-  2 e. NN | 
						
							| 46 | 45 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 47 |  | expgt1 |  |-  ( ( ( ( 2 x. N ) + 1 ) e. RR /\ 2 e. NN /\ 1 < ( ( 2 x. N ) + 1 ) ) -> 1 < ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) | 
						
							| 48 | 21 46 28 47 | syl3anc |  |-  ( N e. NN -> 1 < ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) | 
						
							| 49 | 36 42 | elrpd |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 50 | 49 | recgt1d |  |-  ( N e. NN -> ( 1 < ( ( ( 2 x. N ) + 1 ) ^ 2 ) <-> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) < 1 ) ) | 
						
							| 51 | 48 50 | mpbid |  |-  ( N e. NN -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) < 1 ) | 
						
							| 52 | 37 16 | absltd |  |-  ( N e. NN -> ( ( abs ` ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) < 1 <-> ( -u 1 < ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) /\ ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) < 1 ) ) ) | 
						
							| 53 | 44 51 52 | mpbir2and |  |-  ( N e. NN -> ( abs ` ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) < 1 ) | 
						
							| 54 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 55 | 54 | a1i |  |-  ( N e. NN -> 1 e. NN0 ) | 
						
							| 56 | 4 | a1i |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> L = ( k e. NN |-> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ k ) ) ) | 
						
							| 57 |  | simpr |  |-  ( ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) /\ k = j ) -> k = j ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) /\ k = j ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ k ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ j ) ) | 
						
							| 59 |  | elnnuz |  |-  ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) | 
						
							| 60 | 59 | biimpri |  |-  ( j e. ( ZZ>= ` 1 ) -> j e. NN ) | 
						
							| 61 | 60 | adantl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> j e. NN ) | 
						
							| 62 | 34 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. CC ) | 
						
							| 63 | 61 | nnnn0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> j e. NN0 ) | 
						
							| 64 | 62 63 | expcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ j ) e. CC ) | 
						
							| 65 | 56 58 61 64 | fvmptd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` 1 ) ) -> ( L ` j ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ j ) ) | 
						
							| 66 | 34 53 55 65 | geolim2 |  |-  ( N e. NN -> seq 1 ( + , L ) ~~> ( ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ 1 ) / ( 1 - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) ) | 
						
							| 67 | 34 | exp1d |  |-  ( N e. NN -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ 1 ) = ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 68 | 14 33 | dividd |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) = 1 ) | 
						
							| 69 | 68 | eqcomd |  |-  ( N e. NN -> 1 = ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( N e. NN -> ( 1 - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 71 | 49 | rpcnne0d |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. CC /\ ( ( ( 2 x. N ) + 1 ) ^ 2 ) =/= 0 ) ) | 
						
							| 72 |  | divsubdir |  |-  ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. CC /\ 1 e. CC /\ ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. CC /\ ( ( ( 2 x. N ) + 1 ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) - 1 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) = ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 73 | 14 12 71 72 | syl3anc |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) - 1 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) = ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 74 |  | ax-1cn |  |-  1 e. CC | 
						
							| 75 |  | binom2 |  |-  ( ( ( 2 x. N ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) + ( 1 ^ 2 ) ) ) | 
						
							| 76 | 11 74 75 | sylancl |  |-  ( N e. NN -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) + ( 1 ^ 2 ) ) ) | 
						
							| 77 | 76 | oveq1d |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) - 1 ) = ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) + ( 1 ^ 2 ) ) - 1 ) ) | 
						
							| 78 | 9 10 | sqmuld |  |-  ( N e. NN -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) | 
						
							| 79 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 80 | 79 | a1i |  |-  ( N e. NN -> ( 2 ^ 2 ) = 4 ) | 
						
							| 81 | 80 | oveq1d |  |-  ( N e. NN -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) ) | 
						
							| 82 | 78 81 | eqtrd |  |-  ( N e. NN -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) | 
						
							| 83 | 11 | mulridd |  |-  ( N e. NN -> ( ( 2 x. N ) x. 1 ) = ( 2 x. N ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( N e. NN -> ( 2 x. ( ( 2 x. N ) x. 1 ) ) = ( 2 x. ( 2 x. N ) ) ) | 
						
							| 85 | 9 9 10 | mulassd |  |-  ( N e. NN -> ( ( 2 x. 2 ) x. N ) = ( 2 x. ( 2 x. N ) ) ) | 
						
							| 86 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 87 | 86 | a1i |  |-  ( N e. NN -> ( 2 x. 2 ) = 4 ) | 
						
							| 88 | 87 | oveq1d |  |-  ( N e. NN -> ( ( 2 x. 2 ) x. N ) = ( 4 x. N ) ) | 
						
							| 89 | 84 85 88 | 3eqtr2d |  |-  ( N e. NN -> ( 2 x. ( ( 2 x. N ) x. 1 ) ) = ( 4 x. N ) ) | 
						
							| 90 | 82 89 | oveq12d |  |-  ( N e. NN -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) | 
						
							| 91 |  | 4cn |  |-  4 e. CC | 
						
							| 92 | 91 | a1i |  |-  ( N e. NN -> 4 e. CC ) | 
						
							| 93 | 10 | sqcld |  |-  ( N e. NN -> ( N ^ 2 ) e. CC ) | 
						
							| 94 | 92 93 10 | adddid |  |-  ( N e. NN -> ( 4 x. ( ( N ^ 2 ) + N ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) | 
						
							| 95 | 10 | sqvald |  |-  ( N e. NN -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 96 | 10 | mulridd |  |-  ( N e. NN -> ( N x. 1 ) = N ) | 
						
							| 97 | 96 | eqcomd |  |-  ( N e. NN -> N = ( N x. 1 ) ) | 
						
							| 98 | 95 97 | oveq12d |  |-  ( N e. NN -> ( ( N ^ 2 ) + N ) = ( ( N x. N ) + ( N x. 1 ) ) ) | 
						
							| 99 | 10 10 12 | adddid |  |-  ( N e. NN -> ( N x. ( N + 1 ) ) = ( ( N x. N ) + ( N x. 1 ) ) ) | 
						
							| 100 | 98 99 | eqtr4d |  |-  ( N e. NN -> ( ( N ^ 2 ) + N ) = ( N x. ( N + 1 ) ) ) | 
						
							| 101 | 100 | oveq2d |  |-  ( N e. NN -> ( 4 x. ( ( N ^ 2 ) + N ) ) = ( 4 x. ( N x. ( N + 1 ) ) ) ) | 
						
							| 102 | 90 94 101 | 3eqtr2d |  |-  ( N e. NN -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) = ( 4 x. ( N x. ( N + 1 ) ) ) ) | 
						
							| 103 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 104 | 103 | a1i |  |-  ( N e. NN -> ( 1 ^ 2 ) = 1 ) | 
						
							| 105 | 102 104 | oveq12d |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) + ( 1 ^ 2 ) ) = ( ( 4 x. ( N x. ( N + 1 ) ) ) + 1 ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( ( 2 x. N ) x. 1 ) ) ) + ( 1 ^ 2 ) ) - 1 ) = ( ( ( 4 x. ( N x. ( N + 1 ) ) ) + 1 ) - 1 ) ) | 
						
							| 107 | 10 12 | addcld |  |-  ( N e. NN -> ( N + 1 ) e. CC ) | 
						
							| 108 | 10 107 | mulcld |  |-  ( N e. NN -> ( N x. ( N + 1 ) ) e. CC ) | 
						
							| 109 | 92 108 | mulcld |  |-  ( N e. NN -> ( 4 x. ( N x. ( N + 1 ) ) ) e. CC ) | 
						
							| 110 | 109 12 | pncand |  |-  ( N e. NN -> ( ( ( 4 x. ( N x. ( N + 1 ) ) ) + 1 ) - 1 ) = ( 4 x. ( N x. ( N + 1 ) ) ) ) | 
						
							| 111 | 77 106 110 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) - 1 ) = ( 4 x. ( N x. ( N + 1 ) ) ) ) | 
						
							| 112 | 111 | oveq1d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) - 1 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) = ( ( 4 x. ( N x. ( N + 1 ) ) ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 113 | 70 73 112 | 3eqtr2d |  |-  ( N e. NN -> ( 1 - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) = ( ( 4 x. ( N x. ( N + 1 ) ) ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) | 
						
							| 114 | 67 113 | oveq12d |  |-  ( N e. NN -> ( ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ 1 ) / ( 1 - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) / ( ( 4 x. ( N x. ( N + 1 ) ) ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 115 |  | 4pos |  |-  0 < 4 | 
						
							| 116 | 115 | a1i |  |-  ( N e. NN -> 0 < 4 ) | 
						
							| 117 | 116 | gt0ne0d |  |-  ( N e. NN -> 4 =/= 0 ) | 
						
							| 118 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 119 | 19 16 | readdcld |  |-  ( N e. NN -> ( N + 1 ) e. RR ) | 
						
							| 120 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 121 | 19 | ltp1d |  |-  ( N e. NN -> N < ( N + 1 ) ) | 
						
							| 122 | 15 19 119 120 121 | lttrd |  |-  ( N e. NN -> 0 < ( N + 1 ) ) | 
						
							| 123 | 122 | gt0ne0d |  |-  ( N e. NN -> ( N + 1 ) =/= 0 ) | 
						
							| 124 | 10 107 118 123 | mulne0d |  |-  ( N e. NN -> ( N x. ( N + 1 ) ) =/= 0 ) | 
						
							| 125 | 92 108 117 124 | mulne0d |  |-  ( N e. NN -> ( 4 x. ( N x. ( N + 1 ) ) ) =/= 0 ) | 
						
							| 126 | 12 14 109 14 33 33 125 | divdivdivd |  |-  ( N e. NN -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) / ( ( 4 x. ( N x. ( N + 1 ) ) ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) = ( ( 1 x. ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. ( 4 x. ( N x. ( N + 1 ) ) ) ) ) ) | 
						
							| 127 | 12 14 | mulcomd |  |-  ( N e. NN -> ( 1 x. ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) = ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. 1 ) ) | 
						
							| 128 | 127 | oveq1d |  |-  ( N e. NN -> ( ( 1 x. ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. ( 4 x. ( N x. ( N + 1 ) ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. 1 ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. ( 4 x. ( N x. ( N + 1 ) ) ) ) ) ) | 
						
							| 129 | 12 | mulridd |  |-  ( N e. NN -> ( 1 x. 1 ) = 1 ) | 
						
							| 130 | 129 | eqcomd |  |-  ( N e. NN -> 1 = ( 1 x. 1 ) ) | 
						
							| 131 | 130 | oveq1d |  |-  ( N e. NN -> ( 1 / ( 4 x. ( N x. ( N + 1 ) ) ) ) = ( ( 1 x. 1 ) / ( 4 x. ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 132 | 12 92 12 108 117 124 | divmuldivd |  |-  ( N e. NN -> ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) = ( ( 1 x. 1 ) / ( 4 x. ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 133 | 131 132 | eqtr4d |  |-  ( N e. NN -> ( 1 / ( 4 x. ( N x. ( N + 1 ) ) ) ) = ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 134 | 68 133 | oveq12d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) x. ( 1 / ( 4 x. ( N x. ( N + 1 ) ) ) ) ) = ( 1 x. ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) ) | 
						
							| 135 | 14 14 12 109 33 125 | divmuldivd |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) x. ( 1 / ( 4 x. ( N x. ( N + 1 ) ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. 1 ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. ( 4 x. ( N x. ( N + 1 ) ) ) ) ) ) | 
						
							| 136 | 92 117 | reccld |  |-  ( N e. NN -> ( 1 / 4 ) e. CC ) | 
						
							| 137 | 108 124 | reccld |  |-  ( N e. NN -> ( 1 / ( N x. ( N + 1 ) ) ) e. CC ) | 
						
							| 138 | 136 137 | mulcld |  |-  ( N e. NN -> ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) e. CC ) | 
						
							| 139 | 138 | mullidd |  |-  ( N e. NN -> ( 1 x. ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) = ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 140 | 134 135 139 | 3eqtr3d |  |-  ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. 1 ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) x. ( 4 x. ( N x. ( N + 1 ) ) ) ) ) = ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 141 | 126 128 140 | 3eqtrd |  |-  ( N e. NN -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) / ( ( 4 x. ( N x. ( N + 1 ) ) ) / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) = ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 142 | 114 141 | eqtrd |  |-  ( N e. NN -> ( ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ 1 ) / ( 1 - ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ) ) = ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 143 | 66 142 | breqtrd |  |-  ( N e. NN -> seq 1 ( + , L ) ~~> ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) | 
						
							| 144 | 59 | biimpi |  |-  ( j e. NN -> j e. ( ZZ>= ` 1 ) ) | 
						
							| 145 | 144 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) | 
						
							| 146 |  | oveq2 |  |-  ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) | 
						
							| 147 | 146 | oveq1d |  |-  ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 148 | 147 | oveq2d |  |-  ( k = n -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 149 | 146 | oveq2d |  |-  ( k = n -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) | 
						
							| 150 | 148 149 | oveq12d |  |-  ( k = n -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) | 
						
							| 151 |  | elfznn |  |-  ( n e. ( 1 ... j ) -> n e. NN ) | 
						
							| 152 | 151 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> n e. NN ) | 
						
							| 153 |  | 2cnd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 2 e. CC ) | 
						
							| 154 | 152 | nncnd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> n e. CC ) | 
						
							| 155 | 153 154 | mulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. CC ) | 
						
							| 156 |  | 1cnd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 1 e. CC ) | 
						
							| 157 | 155 156 | addcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. CC ) | 
						
							| 158 |  | 0red |  |-  ( n e. NN -> 0 e. RR ) | 
						
							| 159 |  | 1red |  |-  ( n e. NN -> 1 e. RR ) | 
						
							| 160 | 17 | a1i |  |-  ( n e. NN -> 2 e. RR ) | 
						
							| 161 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 162 | 160 161 | remulcld |  |-  ( n e. NN -> ( 2 x. n ) e. RR ) | 
						
							| 163 | 162 159 | readdcld |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR ) | 
						
							| 164 | 22 | a1i |  |-  ( n e. NN -> 0 < 1 ) | 
						
							| 165 | 24 | a1i |  |-  ( n e. NN -> 2 e. RR+ ) | 
						
							| 166 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 167 | 165 166 | rpmulcld |  |-  ( n e. NN -> ( 2 x. n ) e. RR+ ) | 
						
							| 168 | 159 167 | ltaddrp2d |  |-  ( n e. NN -> 1 < ( ( 2 x. n ) + 1 ) ) | 
						
							| 169 | 158 159 163 164 168 | lttrd |  |-  ( n e. NN -> 0 < ( ( 2 x. n ) + 1 ) ) | 
						
							| 170 | 151 169 | syl |  |-  ( n e. ( 1 ... j ) -> 0 < ( ( 2 x. n ) + 1 ) ) | 
						
							| 171 | 170 | gt0ne0d |  |-  ( n e. ( 1 ... j ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) | 
						
							| 172 | 171 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) | 
						
							| 173 | 157 172 | reccld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 174 | 10 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> N e. CC ) | 
						
							| 175 | 153 174 | mulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 2 x. N ) e. CC ) | 
						
							| 176 | 175 156 | addcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 177 | 30 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 178 | 176 177 | reccld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) | 
						
							| 179 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 180 | 179 | a1i |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 2 e. NN0 ) | 
						
							| 181 | 152 | nnnn0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> n e. NN0 ) | 
						
							| 182 | 180 181 | nn0mulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 183 | 178 182 | expcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) e. CC ) | 
						
							| 184 | 173 183 | mulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) e. CC ) | 
						
							| 185 | 3 150 152 184 | fvmptd3 |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) | 
						
							| 186 | 185 | adantlr |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) | 
						
							| 187 | 169 | gt0ne0d |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) | 
						
							| 188 | 163 187 | rereccld |  |-  ( n e. NN -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 189 | 151 188 | syl |  |-  ( n e. ( 1 ... j ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 190 | 189 | adantl |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 191 | 21 30 | rereccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 192 | 191 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 193 | 192 182 | reexpcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) e. RR ) | 
						
							| 194 | 193 | adantlr |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) e. RR ) | 
						
							| 195 | 190 194 | remulcld |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) e. RR ) | 
						
							| 196 | 186 195 | eqeltrd |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) e. RR ) | 
						
							| 197 |  | readdcl |  |-  ( ( n e. RR /\ i e. RR ) -> ( n + i ) e. RR ) | 
						
							| 198 | 197 | adantl |  |-  ( ( ( N e. NN /\ j e. NN ) /\ ( n e. RR /\ i e. RR ) ) -> ( n + i ) e. RR ) | 
						
							| 199 | 145 196 198 | seqcl |  |-  ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , K ) ` j ) e. RR ) | 
						
							| 200 |  | oveq2 |  |-  ( k = n -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ k ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 201 | 34 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. CC ) | 
						
							| 202 | 201 181 | expcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) e. CC ) | 
						
							| 203 | 4 200 152 202 | fvmptd3 |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( L ` n ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 204 | 37 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. RR ) | 
						
							| 205 | 204 181 | reexpcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) e. RR ) | 
						
							| 206 | 203 205 | eqeltrd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( L ` n ) e. RR ) | 
						
							| 207 | 206 | adantlr |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( L ` n ) e. RR ) | 
						
							| 208 | 145 207 198 | seqcl |  |-  ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , L ) ` j ) e. RR ) | 
						
							| 209 | 31 | a1i |  |-  ( n e. ( 1 ... j ) -> 2 e. ZZ ) | 
						
							| 210 |  | elfzelz |  |-  ( n e. ( 1 ... j ) -> n e. ZZ ) | 
						
							| 211 | 209 210 | zmulcld |  |-  ( n e. ( 1 ... j ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 212 |  | 1exp |  |-  ( ( 2 x. n ) e. ZZ -> ( 1 ^ ( 2 x. n ) ) = 1 ) | 
						
							| 213 | 211 212 | syl |  |-  ( n e. ( 1 ... j ) -> ( 1 ^ ( 2 x. n ) ) = 1 ) | 
						
							| 214 |  | 1exp |  |-  ( n e. ZZ -> ( 1 ^ n ) = 1 ) | 
						
							| 215 | 210 214 | syl |  |-  ( n e. ( 1 ... j ) -> ( 1 ^ n ) = 1 ) | 
						
							| 216 | 213 215 | eqtr4d |  |-  ( n e. ( 1 ... j ) -> ( 1 ^ ( 2 x. n ) ) = ( 1 ^ n ) ) | 
						
							| 217 | 216 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 ^ ( 2 x. n ) ) = ( 1 ^ n ) ) | 
						
							| 218 | 176 181 180 | expmuld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) = ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) ^ n ) ) | 
						
							| 219 | 217 218 | oveq12d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( 1 ^ n ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) ^ n ) ) ) | 
						
							| 220 | 156 176 177 182 | expdivd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) = ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) | 
						
							| 221 | 176 | sqcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. CC ) | 
						
							| 222 | 31 | a1i |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 2 e. ZZ ) | 
						
							| 223 | 176 177 222 | expne0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) =/= 0 ) | 
						
							| 224 | 156 221 223 181 | expdivd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) = ( ( 1 ^ n ) / ( ( ( ( 2 x. N ) + 1 ) ^ 2 ) ^ n ) ) ) | 
						
							| 225 | 219 220 224 | 3eqtr4d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 226 | 225 | oveq2d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) ) | 
						
							| 227 |  | 1rp |  |-  1 e. RR+ | 
						
							| 228 | 227 | a1i |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 1 e. RR+ ) | 
						
							| 229 | 17 | a1i |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 2 e. RR ) | 
						
							| 230 | 152 | nnred |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> n e. RR ) | 
						
							| 231 | 229 230 | remulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. RR ) | 
						
							| 232 | 180 | nn0ge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ 2 ) | 
						
							| 233 | 181 | nn0ge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ n ) | 
						
							| 234 | 229 230 232 233 | mulge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ ( 2 x. n ) ) | 
						
							| 235 | 231 234 | ge0p1rpd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. RR+ ) | 
						
							| 236 |  | 1red |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 1 e. RR ) | 
						
							| 237 | 228 | rpge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ 1 ) | 
						
							| 238 | 159 163 168 | ltled |  |-  ( n e. NN -> 1 <_ ( ( 2 x. n ) + 1 ) ) | 
						
							| 239 | 151 238 | syl |  |-  ( n e. ( 1 ... j ) -> 1 <_ ( ( 2 x. n ) + 1 ) ) | 
						
							| 240 | 239 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 1 <_ ( ( 2 x. n ) + 1 ) ) | 
						
							| 241 | 228 235 236 237 240 | lediv2ad |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) <_ ( 1 / 1 ) ) | 
						
							| 242 | 156 | div1d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / 1 ) = 1 ) | 
						
							| 243 | 241 242 | breqtrd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) <_ 1 ) | 
						
							| 244 | 152 188 | syl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 245 | 19 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> N e. RR ) | 
						
							| 246 | 229 245 | remulcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 2 x. N ) e. RR ) | 
						
							| 247 | 15 19 120 | ltled |  |-  ( N e. NN -> 0 <_ N ) | 
						
							| 248 | 247 | adantr |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ N ) | 
						
							| 249 | 229 245 232 248 | mulge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> 0 <_ ( 2 x. N ) ) | 
						
							| 250 | 246 249 | ge0p1rpd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) e. RR+ ) | 
						
							| 251 | 250 222 | rpexpcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 252 | 251 | rpreccld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) e. RR+ ) | 
						
							| 253 | 210 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> n e. ZZ ) | 
						
							| 254 | 252 253 | rpexpcld |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) e. RR+ ) | 
						
							| 255 | 244 236 254 | lemul1d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) <_ 1 <-> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) <_ ( 1 x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) ) ) | 
						
							| 256 | 243 255 | mpbid |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) <_ ( 1 x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) ) | 
						
							| 257 | 202 | mullidd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( 1 x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) = ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 258 | 256 257 | breqtrd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) <_ ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 259 | 226 258 | eqbrtrd |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) <_ ( ( 1 / ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) ^ n ) ) | 
						
							| 260 | 259 185 203 | 3brtr4d |  |-  ( ( N e. NN /\ n e. ( 1 ... j ) ) -> ( K ` n ) <_ ( L ` n ) ) | 
						
							| 261 | 260 | adantlr |  |-  ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) <_ ( L ` n ) ) | 
						
							| 262 | 145 196 207 261 | serle |  |-  ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , K ) ` j ) <_ ( seq 1 ( + , L ) ` j ) ) | 
						
							| 263 | 5 6 8 143 199 208 262 | climle |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( N x. ( N + 1 ) ) ) ) ) |