| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem11.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem11.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 |  | stirlinglem11.3 |  |-  K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) | 
						
							| 4 |  | 0red |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 5 | 3 | a1i |  |-  ( N e. NN -> K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( N e. NN /\ k = 1 ) -> k = 1 ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( N e. NN /\ k = 1 ) -> ( 2 x. k ) = ( 2 x. 1 ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( N e. NN /\ k = 1 ) -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. 1 ) + 1 ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( N e. NN /\ k = 1 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. 1 ) + 1 ) ) ) | 
						
							| 10 | 7 | oveq2d |  |-  ( ( N e. NN /\ k = 1 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( ( N e. NN /\ k = 1 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) ) | 
						
							| 12 |  | 1nn |  |-  1 e. NN | 
						
							| 13 | 12 | a1i |  |-  ( N e. NN -> 1 e. NN ) | 
						
							| 14 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 15 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 16 | 14 15 | mulcld |  |-  ( N e. NN -> ( 2 x. 1 ) e. CC ) | 
						
							| 17 | 16 15 | addcld |  |-  ( N e. NN -> ( ( 2 x. 1 ) + 1 ) e. CC ) | 
						
							| 18 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 19 | 18 | oveq1i |  |-  ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) | 
						
							| 20 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 21 | 19 20 | eqtri |  |-  ( ( 2 x. 1 ) + 1 ) = 3 | 
						
							| 22 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 23 | 21 22 | eqnetri |  |-  ( ( 2 x. 1 ) + 1 ) =/= 0 | 
						
							| 24 | 23 | a1i |  |-  ( N e. NN -> ( ( 2 x. 1 ) + 1 ) =/= 0 ) | 
						
							| 25 | 17 24 | reccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. CC ) | 
						
							| 26 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 27 | 14 26 | mulcld |  |-  ( N e. NN -> ( 2 x. N ) e. CC ) | 
						
							| 28 | 27 15 | addcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 29 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 30 |  | 2re |  |-  2 e. RR | 
						
							| 31 | 30 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 32 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 33 | 31 32 | remulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR ) | 
						
							| 34 | 33 29 | readdcld |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 35 |  | 0lt1 |  |-  0 < 1 | 
						
							| 36 | 35 | a1i |  |-  ( N e. NN -> 0 < 1 ) | 
						
							| 37 |  | 2rp |  |-  2 e. RR+ | 
						
							| 38 | 37 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 39 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 40 | 38 39 | rpmulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR+ ) | 
						
							| 41 | 29 40 | ltaddrp2d |  |-  ( N e. NN -> 1 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 42 | 4 29 34 36 41 | lttrd |  |-  ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) | 
						
							| 43 | 42 | gt0ne0d |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 44 | 28 43 | reccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) | 
						
							| 45 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 46 | 45 | a1i |  |-  ( N e. NN -> 2 e. NN0 ) | 
						
							| 47 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 48 | 47 | a1i |  |-  ( N e. NN -> 1 e. NN0 ) | 
						
							| 49 | 46 48 | nn0mulcld |  |-  ( N e. NN -> ( 2 x. 1 ) e. NN0 ) | 
						
							| 50 | 44 49 | expcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. CC ) | 
						
							| 51 | 25 50 | mulcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. CC ) | 
						
							| 52 | 5 11 13 51 | fvmptd |  |-  ( N e. NN -> ( K ` 1 ) = ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) ) | 
						
							| 53 |  | 1re |  |-  1 e. RR | 
						
							| 54 | 30 53 | remulcli |  |-  ( 2 x. 1 ) e. RR | 
						
							| 55 | 54 53 | readdcli |  |-  ( ( 2 x. 1 ) + 1 ) e. RR | 
						
							| 56 | 55 23 | rereccli |  |-  ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR | 
						
							| 57 | 56 | a1i |  |-  ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR ) | 
						
							| 58 | 34 43 | rereccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 59 | 58 49 | reexpcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. RR ) | 
						
							| 60 | 57 59 | remulcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. RR ) | 
						
							| 61 | 52 60 | eqeltrd |  |-  ( N e. NN -> ( K ` 1 ) e. RR ) | 
						
							| 62 | 1 | stirlinglem2 |  |-  ( N e. NN -> ( A ` N ) e. RR+ ) | 
						
							| 63 | 62 | relogcld |  |-  ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) | 
						
							| 64 |  | nfcv |  |-  F/_ n N | 
						
							| 65 |  | nfcv |  |-  F/_ n log | 
						
							| 66 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 67 | 1 66 | nfcxfr |  |-  F/_ n A | 
						
							| 68 | 67 64 | nffv |  |-  F/_ n ( A ` N ) | 
						
							| 69 | 65 68 | nffv |  |-  F/_ n ( log ` ( A ` N ) ) | 
						
							| 70 |  | 2fveq3 |  |-  ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) | 
						
							| 71 | 64 69 70 2 | fvmptf |  |-  ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 72 | 63 71 | mpdan |  |-  ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 73 | 72 63 | eqeltrd |  |-  ( N e. NN -> ( B ` N ) e. RR ) | 
						
							| 74 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 75 | 1 | stirlinglem2 |  |-  ( ( N + 1 ) e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) | 
						
							| 76 | 74 75 | syl |  |-  ( N e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) | 
						
							| 77 | 76 | relogcld |  |-  ( N e. NN -> ( log ` ( A ` ( N + 1 ) ) ) e. RR ) | 
						
							| 78 |  | nfcv |  |-  F/_ n ( N + 1 ) | 
						
							| 79 | 67 78 | nffv |  |-  F/_ n ( A ` ( N + 1 ) ) | 
						
							| 80 | 65 79 | nffv |  |-  F/_ n ( log ` ( A ` ( N + 1 ) ) ) | 
						
							| 81 |  | 2fveq3 |  |-  ( n = ( N + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) | 
						
							| 82 | 78 80 81 2 | fvmptf |  |-  ( ( ( N + 1 ) e. NN /\ ( log ` ( A ` ( N + 1 ) ) ) e. RR ) -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) | 
						
							| 83 | 74 77 82 | syl2anc |  |-  ( N e. NN -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) | 
						
							| 84 | 83 77 | eqeltrd |  |-  ( N e. NN -> ( B ` ( N + 1 ) ) e. RR ) | 
						
							| 85 | 73 84 | resubcld |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) e. RR ) | 
						
							| 86 | 31 29 | remulcld |  |-  ( N e. NN -> ( 2 x. 1 ) e. RR ) | 
						
							| 87 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 88 | 87 | a1i |  |-  ( N e. NN -> 0 <_ 2 ) | 
						
							| 89 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 90 | 89 | a1i |  |-  ( N e. NN -> 0 <_ 1 ) | 
						
							| 91 | 31 29 88 90 | mulge0d |  |-  ( N e. NN -> 0 <_ ( 2 x. 1 ) ) | 
						
							| 92 | 86 91 | ge0p1rpd |  |-  ( N e. NN -> ( ( 2 x. 1 ) + 1 ) e. RR+ ) | 
						
							| 93 | 92 | rpreccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR+ ) | 
						
							| 94 | 39 | rpge0d |  |-  ( N e. NN -> 0 <_ N ) | 
						
							| 95 | 31 32 88 94 | mulge0d |  |-  ( N e. NN -> 0 <_ ( 2 x. N ) ) | 
						
							| 96 | 33 95 | ge0p1rpd |  |-  ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR+ ) | 
						
							| 97 | 96 | rpreccld |  |-  ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR+ ) | 
						
							| 98 |  | 2z |  |-  2 e. ZZ | 
						
							| 99 | 98 | a1i |  |-  ( N e. NN -> 2 e. ZZ ) | 
						
							| 100 |  | 1z |  |-  1 e. ZZ | 
						
							| 101 | 100 | a1i |  |-  ( N e. NN -> 1 e. ZZ ) | 
						
							| 102 | 99 101 | zmulcld |  |-  ( N e. NN -> ( 2 x. 1 ) e. ZZ ) | 
						
							| 103 | 97 102 | rpexpcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. RR+ ) | 
						
							| 104 | 93 103 | rpmulcld |  |-  ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. RR+ ) | 
						
							| 105 | 52 104 | eqeltrd |  |-  ( N e. NN -> ( K ` 1 ) e. RR+ ) | 
						
							| 106 | 105 | rpgt0d |  |-  ( N e. NN -> 0 < ( K ` 1 ) ) | 
						
							| 107 | 85 61 | resubcld |  |-  ( N e. NN -> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) e. RR ) | 
						
							| 108 |  | eqid |  |-  ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` ( 1 + 1 ) ) | 
						
							| 109 | 101 | peano2zd |  |-  ( N e. NN -> ( 1 + 1 ) e. ZZ ) | 
						
							| 110 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 111 | 3 | a1i |  |-  ( ( N e. NN /\ j e. NN ) -> K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) ) | 
						
							| 112 |  | oveq2 |  |-  ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( k = j -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 115 | 112 | oveq2d |  |-  ( k = j -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) | 
						
							| 116 | 114 115 | oveq12d |  |-  ( k = j -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( N e. NN /\ j e. NN ) /\ k = j ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) | 
						
							| 118 |  | simpr |  |-  ( ( N e. NN /\ j e. NN ) -> j e. NN ) | 
						
							| 119 |  | 2cnd |  |-  ( ( N e. NN /\ j e. NN ) -> 2 e. CC ) | 
						
							| 120 |  | nncn |  |-  ( j e. NN -> j e. CC ) | 
						
							| 121 | 120 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. CC ) | 
						
							| 122 | 119 121 | mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. CC ) | 
						
							| 123 |  | 1cnd |  |-  ( ( N e. NN /\ j e. NN ) -> 1 e. CC ) | 
						
							| 124 | 122 123 | addcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) e. CC ) | 
						
							| 125 |  | 0red |  |-  ( ( N e. NN /\ j e. NN ) -> 0 e. RR ) | 
						
							| 126 |  | 1red |  |-  ( ( N e. NN /\ j e. NN ) -> 1 e. RR ) | 
						
							| 127 | 30 | a1i |  |-  ( ( N e. NN /\ j e. NN ) -> 2 e. RR ) | 
						
							| 128 |  | nnre |  |-  ( j e. NN -> j e. RR ) | 
						
							| 129 | 128 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. RR ) | 
						
							| 130 | 127 129 | remulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. RR ) | 
						
							| 131 | 130 126 | readdcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) e. RR ) | 
						
							| 132 | 35 | a1i |  |-  ( ( N e. NN /\ j e. NN ) -> 0 < 1 ) | 
						
							| 133 | 37 | a1i |  |-  ( ( N e. NN /\ j e. NN ) -> 2 e. RR+ ) | 
						
							| 134 |  | nnrp |  |-  ( j e. NN -> j e. RR+ ) | 
						
							| 135 | 134 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. RR+ ) | 
						
							| 136 | 133 135 | rpmulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. RR+ ) | 
						
							| 137 | 126 136 | ltaddrp2d |  |-  ( ( N e. NN /\ j e. NN ) -> 1 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 138 | 125 126 131 132 137 | lttrd |  |-  ( ( N e. NN /\ j e. NN ) -> 0 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 139 | 138 | gt0ne0d |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) | 
						
							| 140 | 124 139 | reccld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) | 
						
							| 141 | 26 | adantr |  |-  ( ( N e. NN /\ j e. NN ) -> N e. CC ) | 
						
							| 142 | 119 141 | mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 2 x. N ) e. CC ) | 
						
							| 143 | 142 123 | addcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 144 | 43 | adantr |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 145 | 143 144 | reccld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) | 
						
							| 146 | 45 | a1i |  |-  ( ( N e. NN /\ j e. NN ) -> 2 e. NN0 ) | 
						
							| 147 |  | nnnn0 |  |-  ( j e. NN -> j e. NN0 ) | 
						
							| 148 | 147 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. NN0 ) | 
						
							| 149 | 146 148 | nn0mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. NN0 ) | 
						
							| 150 | 145 149 | expcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) e. CC ) | 
						
							| 151 | 140 150 | mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. CC ) | 
						
							| 152 | 111 117 118 151 | fvmptd |  |-  ( ( N e. NN /\ j e. NN ) -> ( K ` j ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) | 
						
							| 153 |  | 0red |  |-  ( j e. NN -> 0 e. RR ) | 
						
							| 154 |  | 1red |  |-  ( j e. NN -> 1 e. RR ) | 
						
							| 155 | 30 | a1i |  |-  ( j e. NN -> 2 e. RR ) | 
						
							| 156 | 155 128 | remulcld |  |-  ( j e. NN -> ( 2 x. j ) e. RR ) | 
						
							| 157 | 156 154 | readdcld |  |-  ( j e. NN -> ( ( 2 x. j ) + 1 ) e. RR ) | 
						
							| 158 | 35 | a1i |  |-  ( j e. NN -> 0 < 1 ) | 
						
							| 159 | 37 | a1i |  |-  ( j e. NN -> 2 e. RR+ ) | 
						
							| 160 | 159 134 | rpmulcld |  |-  ( j e. NN -> ( 2 x. j ) e. RR+ ) | 
						
							| 161 | 154 160 | ltaddrp2d |  |-  ( j e. NN -> 1 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 162 | 153 154 157 158 161 | lttrd |  |-  ( j e. NN -> 0 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 163 | 162 | gt0ne0d |  |-  ( j e. NN -> ( ( 2 x. j ) + 1 ) =/= 0 ) | 
						
							| 164 | 163 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) | 
						
							| 165 | 124 164 | reccld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) | 
						
							| 166 | 165 150 | mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. CC ) | 
						
							| 167 | 152 166 | eqeltrd |  |-  ( ( N e. NN /\ j e. NN ) -> ( K ` j ) e. CC ) | 
						
							| 168 |  | eqid |  |-  ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) | 
						
							| 169 | 1 2 168 3 | stirlinglem9 |  |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) | 
						
							| 170 | 110 13 167 169 | clim2ser |  |-  ( N e. NN -> seq ( 1 + 1 ) ( + , K ) ~~> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) ) | 
						
							| 171 |  | peano2nn |  |-  ( 1 e. NN -> ( 1 + 1 ) e. NN ) | 
						
							| 172 |  | uznnssnn |  |-  ( ( 1 + 1 ) e. NN -> ( ZZ>= ` ( 1 + 1 ) ) C_ NN ) | 
						
							| 173 | 12 171 172 | mp2b |  |-  ( ZZ>= ` ( 1 + 1 ) ) C_ NN | 
						
							| 174 | 173 | a1i |  |-  ( N e. NN -> ( ZZ>= ` ( 1 + 1 ) ) C_ NN ) | 
						
							| 175 | 174 | sseld |  |-  ( N e. NN -> ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. NN ) ) | 
						
							| 176 | 175 | imdistani |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( N e. NN /\ j e. NN ) ) | 
						
							| 177 | 176 152 | syl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( K ` j ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) | 
						
							| 178 | 30 | a1i |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 2 e. RR ) | 
						
							| 179 |  | eluzelre |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. RR ) | 
						
							| 180 | 178 179 | remulcld |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 2 x. j ) e. RR ) | 
						
							| 181 |  | 1red |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 1 e. RR ) | 
						
							| 182 | 180 181 | readdcld |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( ( 2 x. j ) + 1 ) e. RR ) | 
						
							| 183 | 173 | sseli |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. NN ) | 
						
							| 184 | 183 163 | syl |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) | 
						
							| 185 | 182 184 | rereccld |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. RR ) | 
						
							| 186 | 185 | adantl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. RR ) | 
						
							| 187 | 34 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 188 | 43 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 189 | 187 188 | rereccld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 190 | 176 149 | syl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. j ) e. NN0 ) | 
						
							| 191 | 189 190 | reexpcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) e. RR ) | 
						
							| 192 | 186 191 | remulcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. RR ) | 
						
							| 193 | 177 192 | eqeltrd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( K ` j ) e. RR ) | 
						
							| 194 |  | 1red |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 1 e. RR ) | 
						
							| 195 | 30 | a1i |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 2 e. RR ) | 
						
							| 196 | 176 129 | syl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> j e. RR ) | 
						
							| 197 | 195 196 | remulcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. j ) e. RR ) | 
						
							| 198 | 87 | a1i |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ 2 ) | 
						
							| 199 |  | 0red |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 e. RR ) | 
						
							| 200 | 87 | a1i |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 <_ 2 ) | 
						
							| 201 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 202 |  | eluzle |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 1 + 1 ) <_ j ) | 
						
							| 203 | 201 202 | eqbrtrrid |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 2 <_ j ) | 
						
							| 204 | 199 178 179 200 203 | letrd |  |-  ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 <_ j ) | 
						
							| 205 | 204 | adantl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ j ) | 
						
							| 206 | 195 196 198 205 | mulge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 2 x. j ) ) | 
						
							| 207 | 197 206 | ge0p1rpd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. j ) + 1 ) e. RR+ ) | 
						
							| 208 | 89 | a1i |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ 1 ) | 
						
							| 209 | 194 207 208 | divge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 1 / ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 210 | 32 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> N e. RR ) | 
						
							| 211 | 195 210 | remulcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. N ) e. RR ) | 
						
							| 212 | 94 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ N ) | 
						
							| 213 | 195 210 198 212 | mulge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 2 x. N ) ) | 
						
							| 214 | 211 213 | ge0p1rpd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) e. RR+ ) | 
						
							| 215 | 194 214 208 | divge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 1 / ( ( 2 x. N ) + 1 ) ) ) | 
						
							| 216 | 189 190 215 | expge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) | 
						
							| 217 | 186 191 209 216 | mulge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) | 
						
							| 218 | 217 177 | breqtrrd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( K ` j ) ) | 
						
							| 219 | 108 109 170 193 218 | iserge0 |  |-  ( N e. NN -> 0 <_ ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) ) | 
						
							| 220 |  | seq1 |  |-  ( 1 e. ZZ -> ( seq 1 ( + , K ) ` 1 ) = ( K ` 1 ) ) | 
						
							| 221 | 100 220 | mp1i |  |-  ( N e. NN -> ( seq 1 ( + , K ) ` 1 ) = ( K ` 1 ) ) | 
						
							| 222 | 221 | oveq2d |  |-  ( N e. NN -> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) = ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) ) | 
						
							| 223 | 219 222 | breqtrd |  |-  ( N e. NN -> 0 <_ ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) ) | 
						
							| 224 | 4 107 61 223 | leadd1dd |  |-  ( N e. NN -> ( 0 + ( K ` 1 ) ) <_ ( ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) + ( K ` 1 ) ) ) | 
						
							| 225 | 52 51 | eqeltrd |  |-  ( N e. NN -> ( K ` 1 ) e. CC ) | 
						
							| 226 | 225 | addlidd |  |-  ( N e. NN -> ( 0 + ( K ` 1 ) ) = ( K ` 1 ) ) | 
						
							| 227 | 73 | recnd |  |-  ( N e. NN -> ( B ` N ) e. CC ) | 
						
							| 228 | 84 | recnd |  |-  ( N e. NN -> ( B ` ( N + 1 ) ) e. CC ) | 
						
							| 229 | 227 228 | subcld |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) e. CC ) | 
						
							| 230 | 229 225 | npcand |  |-  ( N e. NN -> ( ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) + ( K ` 1 ) ) = ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) | 
						
							| 231 | 224 226 230 | 3brtr3d |  |-  ( N e. NN -> ( K ` 1 ) <_ ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) | 
						
							| 232 | 4 61 85 106 231 | ltletrd |  |-  ( N e. NN -> 0 < ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) | 
						
							| 233 | 84 73 | posdifd |  |-  ( N e. NN -> ( ( B ` ( N + 1 ) ) < ( B ` N ) <-> 0 < ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) ) | 
						
							| 234 | 232 233 | mpbird |  |-  ( N e. NN -> ( B ` ( N + 1 ) ) < ( B ` N ) ) |