| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem12.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem12.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 |  | stirlinglem12.3 |  |-  F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) | 
						
							| 4 |  | 1nn |  |-  1 e. NN | 
						
							| 5 | 1 | stirlinglem2 |  |-  ( 1 e. NN -> ( A ` 1 ) e. RR+ ) | 
						
							| 6 |  | relogcl |  |-  ( ( A ` 1 ) e. RR+ -> ( log ` ( A ` 1 ) ) e. RR ) | 
						
							| 7 | 4 5 6 | mp2b |  |-  ( log ` ( A ` 1 ) ) e. RR | 
						
							| 8 |  | nfcv |  |-  F/_ n 1 | 
						
							| 9 |  | nfcv |  |-  F/_ n log | 
						
							| 10 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 11 | 1 10 | nfcxfr |  |-  F/_ n A | 
						
							| 12 | 11 8 | nffv |  |-  F/_ n ( A ` 1 ) | 
						
							| 13 | 9 12 | nffv |  |-  F/_ n ( log ` ( A ` 1 ) ) | 
						
							| 14 |  | 2fveq3 |  |-  ( n = 1 -> ( log ` ( A ` n ) ) = ( log ` ( A ` 1 ) ) ) | 
						
							| 15 | 8 13 14 2 | fvmptf |  |-  ( ( 1 e. NN /\ ( log ` ( A ` 1 ) ) e. RR ) -> ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) | 
						
							| 16 | 4 7 15 | mp2an |  |-  ( B ` 1 ) = ( log ` ( A ` 1 ) ) | 
						
							| 17 | 16 7 | eqeltri |  |-  ( B ` 1 ) e. RR | 
						
							| 18 | 17 | a1i |  |-  ( N e. NN -> ( B ` 1 ) e. RR ) | 
						
							| 19 | 1 | stirlinglem2 |  |-  ( N e. NN -> ( A ` N ) e. RR+ ) | 
						
							| 20 | 19 | relogcld |  |-  ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) | 
						
							| 21 |  | nfcv |  |-  F/_ n N | 
						
							| 22 | 11 21 | nffv |  |-  F/_ n ( A ` N ) | 
						
							| 23 | 9 22 | nffv |  |-  F/_ n ( log ` ( A ` N ) ) | 
						
							| 24 |  | 2fveq3 |  |-  ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) | 
						
							| 25 | 21 23 24 2 | fvmptf |  |-  ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 26 | 20 25 | mpdan |  |-  ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 27 | 26 20 | eqeltrd |  |-  ( N e. NN -> ( B ` N ) e. RR ) | 
						
							| 28 |  | 4re |  |-  4 e. RR | 
						
							| 29 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 30 | 28 29 | rereccli |  |-  ( 1 / 4 ) e. RR | 
						
							| 31 | 30 | a1i |  |-  ( N e. NN -> ( 1 / 4 ) e. RR ) | 
						
							| 32 |  | fveq2 |  |-  ( k = j -> ( B ` k ) = ( B ` j ) ) | 
						
							| 33 |  | fveq2 |  |-  ( k = ( j + 1 ) -> ( B ` k ) = ( B ` ( j + 1 ) ) ) | 
						
							| 34 |  | fveq2 |  |-  ( k = 1 -> ( B ` k ) = ( B ` 1 ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = N -> ( B ` k ) = ( B ` N ) ) | 
						
							| 36 |  | elnnuz |  |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) | 
						
							| 37 | 36 | biimpi |  |-  ( N e. NN -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 38 |  | elfznn |  |-  ( k e. ( 1 ... N ) -> k e. NN ) | 
						
							| 39 | 1 | stirlinglem2 |  |-  ( k e. NN -> ( A ` k ) e. RR+ ) | 
						
							| 40 | 38 39 | syl |  |-  ( k e. ( 1 ... N ) -> ( A ` k ) e. RR+ ) | 
						
							| 41 | 40 | relogcld |  |-  ( k e. ( 1 ... N ) -> ( log ` ( A ` k ) ) e. RR ) | 
						
							| 42 |  | nfcv |  |-  F/_ n k | 
						
							| 43 | 11 42 | nffv |  |-  F/_ n ( A ` k ) | 
						
							| 44 | 9 43 | nffv |  |-  F/_ n ( log ` ( A ` k ) ) | 
						
							| 45 |  | 2fveq3 |  |-  ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) | 
						
							| 46 | 42 44 45 2 | fvmptf |  |-  ( ( k e. NN /\ ( log ` ( A ` k ) ) e. RR ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) | 
						
							| 47 | 38 41 46 | syl2anc |  |-  ( k e. ( 1 ... N ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) | 
						
							| 49 | 40 | rpcnd |  |-  ( k e. ( 1 ... N ) -> ( A ` k ) e. CC ) | 
						
							| 50 | 49 | adantl |  |-  ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 51 | 39 | rpne0d |  |-  ( k e. NN -> ( A ` k ) =/= 0 ) | 
						
							| 52 | 38 51 | syl |  |-  ( k e. ( 1 ... N ) -> ( A ` k ) =/= 0 ) | 
						
							| 53 | 52 | adantl |  |-  ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) =/= 0 ) | 
						
							| 54 | 50 53 | logcld |  |-  ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` ( A ` k ) ) e. CC ) | 
						
							| 55 | 48 54 | eqeltrd |  |-  ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. CC ) | 
						
							| 56 | 32 33 34 35 37 55 | telfsumo |  |-  ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = ( ( B ` 1 ) - ( B ` N ) ) ) | 
						
							| 57 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 58 |  | fzoval |  |-  ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 59 | 57 58 | syl |  |-  ( N e. NN -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 60 | 59 | sumeq1d |  |-  ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) | 
						
							| 61 | 56 60 | eqtr3d |  |-  ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) | 
						
							| 62 |  | fzfid |  |-  ( N e. NN -> ( 1 ... ( N - 1 ) ) e. Fin ) | 
						
							| 63 |  | elfznn |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> j e. NN ) | 
						
							| 64 | 63 | adantl |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> j e. NN ) | 
						
							| 65 | 1 | stirlinglem2 |  |-  ( j e. NN -> ( A ` j ) e. RR+ ) | 
						
							| 66 | 65 | relogcld |  |-  ( j e. NN -> ( log ` ( A ` j ) ) e. RR ) | 
						
							| 67 |  | nfcv |  |-  F/_ n j | 
						
							| 68 | 11 67 | nffv |  |-  F/_ n ( A ` j ) | 
						
							| 69 | 9 68 | nffv |  |-  F/_ n ( log ` ( A ` j ) ) | 
						
							| 70 |  | 2fveq3 |  |-  ( n = j -> ( log ` ( A ` n ) ) = ( log ` ( A ` j ) ) ) | 
						
							| 71 | 67 69 70 2 | fvmptf |  |-  ( ( j e. NN /\ ( log ` ( A ` j ) ) e. RR ) -> ( B ` j ) = ( log ` ( A ` j ) ) ) | 
						
							| 72 | 66 71 | mpdan |  |-  ( j e. NN -> ( B ` j ) = ( log ` ( A ` j ) ) ) | 
						
							| 73 | 72 66 | eqeltrd |  |-  ( j e. NN -> ( B ` j ) e. RR ) | 
						
							| 74 | 64 73 | syl |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` j ) e. RR ) | 
						
							| 75 |  | peano2nn |  |-  ( j e. NN -> ( j + 1 ) e. NN ) | 
						
							| 76 | 1 | stirlinglem2 |  |-  ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) | 
						
							| 77 | 75 76 | syl |  |-  ( j e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) | 
						
							| 78 | 77 | relogcld |  |-  ( j e. NN -> ( log ` ( A ` ( j + 1 ) ) ) e. RR ) | 
						
							| 79 |  | nfcv |  |-  F/_ n ( j + 1 ) | 
						
							| 80 | 11 79 | nffv |  |-  F/_ n ( A ` ( j + 1 ) ) | 
						
							| 81 | 9 80 | nffv |  |-  F/_ n ( log ` ( A ` ( j + 1 ) ) ) | 
						
							| 82 |  | 2fveq3 |  |-  ( n = ( j + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) | 
						
							| 83 | 79 81 82 2 | fvmptf |  |-  ( ( ( j + 1 ) e. NN /\ ( log ` ( A ` ( j + 1 ) ) ) e. RR ) -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) | 
						
							| 84 | 75 78 83 | syl2anc |  |-  ( j e. NN -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) | 
						
							| 85 | 84 78 | eqeltrd |  |-  ( j e. NN -> ( B ` ( j + 1 ) ) e. RR ) | 
						
							| 86 | 63 85 | syl |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( B ` ( j + 1 ) ) e. RR ) | 
						
							| 87 | 86 | adantl |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` ( j + 1 ) ) e. RR ) | 
						
							| 88 | 74 87 | resubcld |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) | 
						
							| 89 | 62 88 | fsumrecl |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) | 
						
							| 90 | 30 | a1i |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / 4 ) e. RR ) | 
						
							| 91 | 63 | nnred |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> j e. RR ) | 
						
							| 92 |  | 1red |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. RR ) | 
						
							| 93 | 91 92 | readdcld |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. RR ) | 
						
							| 94 | 91 93 | remulcld |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) e. RR ) | 
						
							| 95 | 91 | recnd |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> j e. CC ) | 
						
							| 96 |  | 1cnd |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. CC ) | 
						
							| 97 | 95 96 | addcld |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. CC ) | 
						
							| 98 | 63 | nnne0d |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> j =/= 0 ) | 
						
							| 99 | 75 | nnne0d |  |-  ( j e. NN -> ( j + 1 ) =/= 0 ) | 
						
							| 100 | 63 99 | syl |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) =/= 0 ) | 
						
							| 101 | 95 97 98 100 | mulne0d |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) | 
						
							| 102 | 94 101 | rereccld |  |-  ( j e. ( 1 ... ( N - 1 ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 103 | 102 | adantl |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 104 | 90 103 | remulcld |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) | 
						
							| 105 | 62 104 | fsumrecl |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) | 
						
							| 106 |  | eqid |  |-  ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) = ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) | 
						
							| 107 |  | eqid |  |-  ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) = ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) | 
						
							| 108 | 1 2 106 107 | stirlinglem10 |  |-  ( j e. NN -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 109 | 64 108 | syl |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 110 | 62 88 104 109 | fsumle |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 111 | 62 103 | fsumrecl |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 112 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 113 |  | 4pos |  |-  0 < 4 | 
						
							| 114 | 28 113 | elrpii |  |-  4 e. RR+ | 
						
							| 115 | 114 | a1i |  |-  ( N e. NN -> 4 e. RR+ ) | 
						
							| 116 |  | 0red |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 117 |  | 0lt1 |  |-  0 < 1 | 
						
							| 118 | 117 | a1i |  |-  ( N e. NN -> 0 < 1 ) | 
						
							| 119 | 116 112 118 | ltled |  |-  ( N e. NN -> 0 <_ 1 ) | 
						
							| 120 | 112 115 119 | divge0d |  |-  ( N e. NN -> 0 <_ ( 1 / 4 ) ) | 
						
							| 121 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 122 |  | eluznn |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. NN ) | 
						
							| 123 | 3 | a1i |  |-  ( j e. NN -> F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) | 
						
							| 124 |  | simpr |  |-  ( ( j e. NN /\ n = j ) -> n = j ) | 
						
							| 125 | 124 | oveq1d |  |-  ( ( j e. NN /\ n = j ) -> ( n + 1 ) = ( j + 1 ) ) | 
						
							| 126 | 124 125 | oveq12d |  |-  ( ( j e. NN /\ n = j ) -> ( n x. ( n + 1 ) ) = ( j x. ( j + 1 ) ) ) | 
						
							| 127 | 126 | oveq2d |  |-  ( ( j e. NN /\ n = j ) -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 128 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 129 |  | nnre |  |-  ( j e. NN -> j e. RR ) | 
						
							| 130 |  | 1red |  |-  ( j e. NN -> 1 e. RR ) | 
						
							| 131 | 129 130 | readdcld |  |-  ( j e. NN -> ( j + 1 ) e. RR ) | 
						
							| 132 | 129 131 | remulcld |  |-  ( j e. NN -> ( j x. ( j + 1 ) ) e. RR ) | 
						
							| 133 |  | nncn |  |-  ( j e. NN -> j e. CC ) | 
						
							| 134 |  | 1cnd |  |-  ( j e. NN -> 1 e. CC ) | 
						
							| 135 | 133 134 | addcld |  |-  ( j e. NN -> ( j + 1 ) e. CC ) | 
						
							| 136 |  | nnne0 |  |-  ( j e. NN -> j =/= 0 ) | 
						
							| 137 | 133 135 136 99 | mulne0d |  |-  ( j e. NN -> ( j x. ( j + 1 ) ) =/= 0 ) | 
						
							| 138 | 132 137 | rereccld |  |-  ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 139 | 123 127 128 138 | fvmptd |  |-  ( j e. NN -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 140 | 122 139 | syl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 141 | 122 | nnred |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR ) | 
						
							| 142 |  | 1red |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. RR ) | 
						
							| 143 | 141 142 | readdcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR ) | 
						
							| 144 | 141 143 | remulcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR ) | 
						
							| 145 | 141 | recnd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. CC ) | 
						
							| 146 |  | 1cnd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. CC ) | 
						
							| 147 | 145 146 | addcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. CC ) | 
						
							| 148 | 122 | nnne0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j =/= 0 ) | 
						
							| 149 | 122 99 | syl |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) =/= 0 ) | 
						
							| 150 | 145 147 148 149 | mulne0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) | 
						
							| 151 | 144 150 | rereccld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 152 |  | seqeq1 |  |-  ( N = 1 -> seq N ( + , F ) = seq 1 ( + , F ) ) | 
						
							| 153 | 3 | trireciplem |  |-  seq 1 ( + , F ) ~~> 1 | 
						
							| 154 |  | climrel |  |-  Rel ~~> | 
						
							| 155 | 154 | releldmi |  |-  ( seq 1 ( + , F ) ~~> 1 -> seq 1 ( + , F ) e. dom ~~> ) | 
						
							| 156 | 153 155 | mp1i |  |-  ( N = 1 -> seq 1 ( + , F ) e. dom ~~> ) | 
						
							| 157 | 152 156 | eqeltrd |  |-  ( N = 1 -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 158 | 157 | adantl |  |-  ( ( N e. NN /\ N = 1 ) -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 159 |  | simpl |  |-  ( ( N e. NN /\ -. N = 1 ) -> N e. NN ) | 
						
							| 160 |  | simpr |  |-  ( ( N e. NN /\ -. N = 1 ) -> -. N = 1 ) | 
						
							| 161 |  | elnn1uz2 |  |-  ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 162 | 159 161 | sylib |  |-  ( ( N e. NN /\ -. N = 1 ) -> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 163 | 162 | ord |  |-  ( ( N e. NN /\ -. N = 1 ) -> ( -. N = 1 -> N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 164 | 160 163 | mpd |  |-  ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 165 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 166 | 164 165 | syl |  |-  ( ( N e. NN /\ -. N = 1 ) -> ( N - 1 ) e. NN ) | 
						
							| 167 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 168 | 167 | adantr |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N e. CC ) | 
						
							| 169 |  | 1cnd |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> 1 e. CC ) | 
						
							| 170 | 168 169 | npcand |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 171 | 170 | eqcomd |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N = ( ( N - 1 ) + 1 ) ) | 
						
							| 172 | 171 | seqeq1d |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) | 
						
							| 173 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 174 |  | id |  |-  ( ( N - 1 ) e. NN -> ( N - 1 ) e. NN ) | 
						
							| 175 | 138 | recnd |  |-  ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) | 
						
							| 176 | 139 175 | eqeltrd |  |-  ( j e. NN -> ( F ` j ) e. CC ) | 
						
							| 177 | 176 | adantl |  |-  ( ( ( N - 1 ) e. NN /\ j e. NN ) -> ( F ` j ) e. CC ) | 
						
							| 178 | 153 | a1i |  |-  ( ( N - 1 ) e. NN -> seq 1 ( + , F ) ~~> 1 ) | 
						
							| 179 | 173 174 177 178 | clim2ser |  |-  ( ( N - 1 ) e. NN -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) | 
						
							| 180 | 179 | adantl |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) | 
						
							| 181 | 172 180 | eqbrtrd |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) | 
						
							| 182 | 154 | releldmi |  |-  ( seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 183 | 181 182 | syl |  |-  ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 184 | 159 166 183 | syl2anc |  |-  ( ( N e. NN /\ -. N = 1 ) -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 185 | 158 184 | pm2.61dan |  |-  ( N e. NN -> seq N ( + , F ) e. dom ~~> ) | 
						
							| 186 | 121 57 140 151 185 | isumrecl |  |-  ( N e. NN -> sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) | 
						
							| 187 | 122 | nnrpd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR+ ) | 
						
							| 188 | 187 | rpge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ j ) | 
						
							| 189 | 141 188 | ge0p1rpd |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR+ ) | 
						
							| 190 | 187 189 | rpmulcld |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR+ ) | 
						
							| 191 | 119 | adantr |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ 1 ) | 
						
							| 192 | 142 190 191 | divge0d |  |-  ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 193 | 121 57 140 151 185 192 | isumge0 |  |-  ( N e. NN -> 0 <_ sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 194 | 116 186 111 193 | leadd2dd |  |-  ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) <_ ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 195 | 111 | recnd |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) | 
						
							| 196 | 195 | addridd |  |-  ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 197 | 196 | eqcomd |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) ) | 
						
							| 198 |  | id |  |-  ( N e. NN -> N e. NN ) | 
						
							| 199 | 139 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 200 | 133 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j e. CC ) | 
						
							| 201 |  | 1cnd |  |-  ( ( N e. NN /\ j e. NN ) -> 1 e. CC ) | 
						
							| 202 | 200 201 | addcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) e. CC ) | 
						
							| 203 | 200 202 | mulcld |  |-  ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) e. CC ) | 
						
							| 204 | 136 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> j =/= 0 ) | 
						
							| 205 | 99 | adantl |  |-  ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) =/= 0 ) | 
						
							| 206 | 200 202 204 205 | mulne0d |  |-  ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) =/= 0 ) | 
						
							| 207 | 203 206 | reccld |  |-  ( ( N e. NN /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) | 
						
							| 208 | 153 155 | mp1i |  |-  ( N e. NN -> seq 1 ( + , F ) e. dom ~~> ) | 
						
							| 209 | 173 121 198 199 207 208 | isumsplit |  |-  ( N e. NN -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 210 | 194 197 209 | 3brtr4d |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 211 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 212 | 139 | adantl |  |-  ( ( T. /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) | 
						
							| 213 | 175 | adantl |  |-  ( ( T. /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) | 
						
							| 214 | 153 | a1i |  |-  ( T. -> seq 1 ( + , F ) ~~> 1 ) | 
						
							| 215 | 173 211 212 213 214 | isumclim |  |-  ( T. -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 ) | 
						
							| 216 | 215 | mptru |  |-  sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 | 
						
							| 217 | 210 216 | breqtrdi |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ 1 ) | 
						
							| 218 | 111 112 31 120 217 | lemul2ad |  |-  ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( ( 1 / 4 ) x. 1 ) ) | 
						
							| 219 |  | 4cn |  |-  4 e. CC | 
						
							| 220 | 219 | a1i |  |-  ( N e. NN -> 4 e. CC ) | 
						
							| 221 | 113 | a1i |  |-  ( N e. NN -> 0 < 4 ) | 
						
							| 222 | 221 | gt0ne0d |  |-  ( N e. NN -> 4 =/= 0 ) | 
						
							| 223 | 220 222 | reccld |  |-  ( N e. NN -> ( 1 / 4 ) e. CC ) | 
						
							| 224 | 103 | recnd |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) | 
						
							| 225 | 62 223 224 | fsummulc2 |  |-  ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) | 
						
							| 226 | 223 | mulridd |  |-  ( N e. NN -> ( ( 1 / 4 ) x. 1 ) = ( 1 / 4 ) ) | 
						
							| 227 | 218 225 226 | 3brtr3d |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( 1 / 4 ) ) | 
						
							| 228 | 89 105 31 110 227 | letrd |  |-  ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( 1 / 4 ) ) | 
						
							| 229 | 61 228 | eqbrtrd |  |-  ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) <_ ( 1 / 4 ) ) | 
						
							| 230 | 18 27 31 229 | subled |  |-  ( N e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` N ) ) |