| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem12.1 | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | stirlinglem12.2 | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 3 |  | stirlinglem12.3 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 4 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 5 | 1 | stirlinglem2 | ⊢ ( 1  ∈  ℕ  →  ( 𝐴 ‘ 1 )  ∈  ℝ+ ) | 
						
							| 6 |  | relogcl | ⊢ ( ( 𝐴 ‘ 1 )  ∈  ℝ+  →  ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 7 | 4 5 6 | mp2b | ⊢ ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑛 1 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑛 log | 
						
							| 10 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 11 | 1 10 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 12 | 11 8 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) | 
						
							| 13 | 9 12 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) | 
						
							| 14 |  | 2fveq3 | ⊢ ( 𝑛  =  1  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) ) | 
						
							| 15 | 8 13 14 2 | fvmptf | ⊢ ( ( 1  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) ) | 
						
							| 16 | 4 7 15 | mp2an | ⊢ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) | 
						
							| 17 | 16 7 | eqeltri | ⊢ ( 𝐵 ‘ 1 )  ∈  ℝ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 1 )  ∈  ℝ ) | 
						
							| 19 | 1 | stirlinglem2 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴 ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | relogcld | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑛 𝑁 | 
						
							| 22 | 11 21 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑁 ) | 
						
							| 23 | 9 22 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑁 ) ) | 
						
							| 24 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑁  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 25 | 21 23 24 2 | fvmptf | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 𝑁 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 𝑁 )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 26 | 20 25 | mpdan | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 𝑁 )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 27 | 26 20 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 28 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 29 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 30 | 28 29 | rereccli | ⊢ ( 1  /  4 )  ∈  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 1 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑁 ) ) | 
						
							| 36 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 37 | 36 | biimpi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  𝑘  ∈  ℕ ) | 
						
							| 39 | 1 | stirlinglem2 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 41 | 40 | relogcld | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( log ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 43 | 11 42 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) | 
						
							| 44 | 9 43 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 45 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 46 | 42 44 45 2 | fvmptf | ⊢ ( ( 𝑘  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 𝑘 )  =  ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 47 | 38 41 46 | syl2anc | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( 𝐵 ‘ 𝑘 )  =  ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑘 )  =  ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 49 | 40 | rpcnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 51 | 39 | rpne0d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐴 ‘ 𝑘 )  ≠  0 ) | 
						
							| 52 | 38 51 | syl | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  →  ( 𝐴 ‘ 𝑘 )  ≠  0 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ≠  0 ) | 
						
							| 54 | 50 53 | logcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( log ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 55 | 48 54 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 56 | 32 33 34 35 37 55 | telfsumo | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐵 ‘ 1 )  −  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 57 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 58 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( 1 ..^ 𝑁 )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ..^ 𝑁 )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 60 | 59 | sumeq1d | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  =  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 61 | 56 60 | eqtr3d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ 1 )  −  ( 𝐵 ‘ 𝑁 ) )  =  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 62 |  | fzfid | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin ) | 
						
							| 63 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 65 | 1 | stirlinglem2 | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐴 ‘ 𝑗 )  ∈  ℝ+ ) | 
						
							| 66 | 65 | relogcld | ⊢ ( 𝑗  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 67 |  | nfcv | ⊢ Ⅎ 𝑛 𝑗 | 
						
							| 68 | 11 67 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) | 
						
							| 69 | 9 68 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 70 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑗  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 71 | 67 69 70 2 | fvmptf | ⊢ ( ( 𝑗  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 𝑗 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 𝑗 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 72 | 66 71 | mpdan | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ 𝑗 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 73 | 72 66 | eqeltrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 74 | 64 73 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 75 |  | peano2nn | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 76 | 1 | stirlinglem2 | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 78 | 77 | relogcld | ⊢ ( 𝑗  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗  +  1 ) | 
						
							| 80 | 11 79 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗  +  1 ) ) | 
						
							| 81 | 9 80 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 82 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 83 | 79 81 82 2 | fvmptf | ⊢ ( ( ( 𝑗  +  1 )  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 84 | 75 78 83 | syl2anc | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 85 | 84 78 | eqeltrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 86 | 63 85 | syl | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 88 | 74 87 | resubcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 89 | 62 88 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 90 | 30 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 91 | 63 | nnred | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 92 |  | 1red | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  1  ∈  ℝ ) | 
						
							| 93 | 91 92 | readdcld | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑗  +  1 )  ∈  ℝ ) | 
						
							| 94 | 91 93 | remulcld | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 95 | 91 | recnd | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 96 |  | 1cnd | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  1  ∈  ℂ ) | 
						
							| 97 | 95 96 | addcld | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑗  +  1 )  ∈  ℂ ) | 
						
							| 98 | 63 | nnne0d | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑗  ≠  0 ) | 
						
							| 99 | 75 | nnne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ≠  0 ) | 
						
							| 100 | 63 99 | syl | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑗  +  1 )  ≠  0 ) | 
						
							| 101 | 95 97 98 100 | mulne0d | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ≠  0 ) | 
						
							| 102 | 94 101 | rereccld | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 104 | 90 103 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 105 | 62 104 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 106 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑖 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ↑ ( 2  ·  𝑖 ) ) ) )  =  ( 𝑖  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑖 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ↑ ( 2  ·  𝑖 ) ) ) ) | 
						
							| 107 |  | eqid | ⊢ ( 𝑖  ∈  ℕ  ↦  ( ( 1  /  ( ( ( 2  ·  𝑗 )  +  1 ) ↑ 2 ) ) ↑ 𝑖 ) )  =  ( 𝑖  ∈  ℕ  ↦  ( ( 1  /  ( ( ( 2  ·  𝑗 )  +  1 ) ↑ 2 ) ) ↑ 𝑖 ) ) | 
						
							| 108 | 1 2 106 107 | stirlinglem10 | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 109 | 64 108 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 110 | 62 88 104 109 | fsumle | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 111 | 62 103 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 112 |  | 1red | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 113 |  | 4pos | ⊢ 0  <  4 | 
						
							| 114 | 28 113 | elrpii | ⊢ 4  ∈  ℝ+ | 
						
							| 115 | 114 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 116 |  | 0red | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 117 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 118 | 117 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  1 ) | 
						
							| 119 | 116 112 118 | ltled | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  1 ) | 
						
							| 120 | 112 115 119 | divge0d | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( 1  /  4 ) ) | 
						
							| 121 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 122 |  | eluznn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 123 | 3 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 124 |  | simpr | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  𝑗 )  →  𝑛  =  𝑗 ) | 
						
							| 125 | 124 | oveq1d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  𝑗 )  →  ( 𝑛  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 126 | 124 125 | oveq12d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  𝑗 )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  =  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) | 
						
							| 127 | 126 | oveq2d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  𝑗 )  →  ( 1  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 128 |  | id | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ ) | 
						
							| 129 |  | nnre | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ ) | 
						
							| 130 |  | 1red | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 131 | 129 130 | readdcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℝ ) | 
						
							| 132 | 129 131 | remulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 133 |  | nncn | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℂ ) | 
						
							| 134 |  | 1cnd | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 135 | 133 134 | addcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℂ ) | 
						
							| 136 |  | nnne0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ≠  0 ) | 
						
							| 137 | 133 135 136 99 | mulne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ≠  0 ) | 
						
							| 138 | 132 137 | rereccld | ⊢ ( 𝑗  ∈  ℕ  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 139 | 123 127 128 138 | fvmptd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐹 ‘ 𝑗 )  =  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 140 | 122 139 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑗 )  =  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 141 | 122 | nnred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 142 |  | 1red | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  1  ∈  ℝ ) | 
						
							| 143 | 141 142 | readdcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  +  1 )  ∈  ℝ ) | 
						
							| 144 | 141 143 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 145 | 141 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 146 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  1  ∈  ℂ ) | 
						
							| 147 | 145 146 | addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  +  1 )  ∈  ℂ ) | 
						
							| 148 | 122 | nnne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ≠  0 ) | 
						
							| 149 | 122 99 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  +  1 )  ≠  0 ) | 
						
							| 150 | 145 147 148 149 | mulne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ≠  0 ) | 
						
							| 151 | 144 150 | rereccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 152 |  | seqeq1 | ⊢ ( 𝑁  =  1  →  seq 𝑁 (  +  ,  𝐹 )  =  seq 1 (  +  ,  𝐹 ) ) | 
						
							| 153 | 3 | trireciplem | ⊢ seq 1 (  +  ,  𝐹 )  ⇝  1 | 
						
							| 154 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 155 | 154 | releldmi | ⊢ ( seq 1 (  +  ,  𝐹 )  ⇝  1  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 156 | 153 155 | mp1i | ⊢ ( 𝑁  =  1  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 157 | 152 156 | eqeltrd | ⊢ ( 𝑁  =  1  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 158 | 157 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑁  =  1 )  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 159 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  𝑁  ∈  ℕ ) | 
						
							| 160 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ¬  𝑁  =  1 ) | 
						
							| 161 |  | elnn1uz2 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 162 | 159 161 | sylib | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 163 | 162 | ord | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ( ¬  𝑁  =  1  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 164 | 160 163 | mpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 165 |  | uz2m1nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 166 | 164 165 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 167 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 169 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 170 | 168 169 | npcand | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 171 | 170 | eqcomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  𝑁  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 172 | 171 | seqeq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  seq 𝑁 (  +  ,  𝐹 )  =  seq ( ( 𝑁  −  1 )  +  1 ) (  +  ,  𝐹 ) ) | 
						
							| 173 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 174 |  | id | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 175 | 138 | recnd | ⊢ ( 𝑗  ∈  ℕ  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 176 | 139 175 | eqeltrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 178 | 153 | a1i | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ  →  seq 1 (  +  ,  𝐹 )  ⇝  1 ) | 
						
							| 179 | 173 174 177 178 | clim2ser | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ  →  seq ( ( 𝑁  −  1 )  +  1 ) (  +  ,  𝐹 )  ⇝  ( 1  −  ( seq 1 (  +  ,  𝐹 ) ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 180 | 179 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  seq ( ( 𝑁  −  1 )  +  1 ) (  +  ,  𝐹 )  ⇝  ( 1  −  ( seq 1 (  +  ,  𝐹 ) ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 181 | 172 180 | eqbrtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  seq 𝑁 (  +  ,  𝐹 )  ⇝  ( 1  −  ( seq 1 (  +  ,  𝐹 ) ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 182 | 154 | releldmi | ⊢ ( seq 𝑁 (  +  ,  𝐹 )  ⇝  ( 1  −  ( seq 1 (  +  ,  𝐹 ) ‘ ( 𝑁  −  1 ) ) )  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 183 | 181 182 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 184 | 159 166 183 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 185 | 158 184 | pm2.61dan | ⊢ ( 𝑁  ∈  ℕ  →  seq 𝑁 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 186 | 121 57 140 151 185 | isumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 187 | 122 | nnrpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ∈  ℝ+ ) | 
						
							| 188 | 187 | rpge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ≤  𝑗 ) | 
						
							| 189 | 141 188 | ge0p1rpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  +  1 )  ∈  ℝ+ ) | 
						
							| 190 | 187 189 | rpmulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 191 | 119 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ≤  1 ) | 
						
							| 192 | 142 190 191 | divge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ≤  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 193 | 121 57 140 151 185 192 | isumge0 | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  Σ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 194 | 116 186 111 193 | leadd2dd | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  +  0 )  ≤  ( Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 195 | 111 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 196 | 195 | addridd | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  +  0 )  =  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 197 | 196 | eqcomd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  =  ( Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  +  0 ) ) | 
						
							| 198 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 199 | 139 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 200 | 133 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℂ ) | 
						
							| 201 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 202 | 200 201 | addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  +  1 )  ∈  ℂ ) | 
						
							| 203 | 200 202 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ∈  ℂ ) | 
						
							| 204 | 136 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ≠  0 ) | 
						
							| 205 | 99 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  +  1 )  ≠  0 ) | 
						
							| 206 | 200 202 204 205 | mulne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  ·  ( 𝑗  +  1 ) )  ≠  0 ) | 
						
							| 207 | 203 206 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 208 | 153 155 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 209 | 173 121 198 199 207 208 | isumsplit | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ℕ ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  =  ( Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  +  Σ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 210 | 194 197 209 | 3brtr4d | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ≤  Σ 𝑗  ∈  ℕ ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 211 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 212 | 139 | adantl | ⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 213 | 175 | adantl | ⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 214 | 153 | a1i | ⊢ ( ⊤  →  seq 1 (  +  ,  𝐹 )  ⇝  1 ) | 
						
							| 215 | 173 211 212 213 214 | isumclim | ⊢ ( ⊤  →  Σ 𝑗  ∈  ℕ ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  =  1 ) | 
						
							| 216 | 215 | mptru | ⊢ Σ 𝑗  ∈  ℕ ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  =  1 | 
						
							| 217 | 210 216 | breqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ≤  1 ) | 
						
							| 218 | 111 112 31 120 217 | lemul2ad | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  4 )  ·  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) )  ≤  ( ( 1  /  4 )  ·  1 ) ) | 
						
							| 219 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 220 | 219 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  4  ∈  ℂ ) | 
						
							| 221 | 113 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  4 ) | 
						
							| 222 | 221 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ  →  4  ≠  0 ) | 
						
							| 223 | 220 222 | reccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  4 )  ∈  ℂ ) | 
						
							| 224 | 103 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 225 | 62 223 224 | fsummulc2 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  4 )  ·  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) )  =  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 226 | 223 | mulridd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  4 )  ·  1 )  =  ( 1  /  4 ) ) | 
						
							| 227 | 218 225 226 | 3brtr3d | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 1  /  4 )  ·  ( 1  /  ( 𝑗  ·  ( 𝑗  +  1 ) ) ) )  ≤  ( 1  /  4 ) ) | 
						
							| 228 | 89 105 31 110 227 | letrd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  ( 1  /  4 ) ) | 
						
							| 229 | 61 228 | eqbrtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ 1 )  −  ( 𝐵 ‘ 𝑁 ) )  ≤  ( 1  /  4 ) ) | 
						
							| 230 | 18 27 31 229 | subled | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑁 ) ) |