| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trireciplem.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 3 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 4 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 5 |
|
nnex |
⊢ ℕ ∈ V |
| 6 |
5
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ∈ V |
| 7 |
6
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ∈ V ) |
| 8 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( 𝑛 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 10 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) |
| 11 |
|
ovex |
⊢ ( 1 / ( 𝑘 + 1 ) ) ∈ V |
| 12 |
9 10 11
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 14 |
2 3 4 3 7 13
|
divcnvshft |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ⇝ 0 ) |
| 15 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ∈ V ) |
| 17 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 18 |
17
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 19 |
18
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 21 |
13 20
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 22 |
13
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 23 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) |
| 24 |
23
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 25 |
24
|
nncnd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℂ ) |
| 26 |
|
peano2cn |
⊢ ( 𝑗 ∈ ℂ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 28 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 29 |
24 28
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 30 |
24 29
|
nnmulcld |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 31 |
30
|
nncnd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 32 |
30
|
nnne0d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 33 |
27 25 31 32
|
divsubdird |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) − 𝑗 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) − ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 34 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 35 |
|
pncan2 |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 𝑗 ) = 1 ) |
| 36 |
25 34 35
|
sylancl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) − 𝑗 ) = 1 ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) − 𝑗 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 38 |
27
|
mulridd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) · 1 ) = ( 𝑗 + 1 ) ) |
| 39 |
27 25
|
mulcomd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) · 𝑗 ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 40 |
38 39
|
oveq12d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) · 1 ) / ( ( 𝑗 + 1 ) · 𝑗 ) ) = ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 41 |
|
1cnd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℂ ) |
| 42 |
24
|
nnne0d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ≠ 0 ) |
| 43 |
29
|
nnne0d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 44 |
41 25 27 42 43
|
divcan5d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) · 1 ) / ( ( 𝑗 + 1 ) · 𝑗 ) ) = ( 1 / 𝑗 ) ) |
| 45 |
40 44
|
eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / 𝑗 ) ) |
| 46 |
25
|
mulridd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · 1 ) = 𝑗 ) |
| 47 |
46
|
oveq1d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 · 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 48 |
41 27 25 43 42
|
divcan5d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 · 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 + 1 ) ) ) |
| 49 |
47 48
|
eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 + 1 ) ) ) |
| 50 |
45 49
|
oveq12d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) − ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) = ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 51 |
33 37 50
|
3eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 52 |
51
|
sumeq2dv |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 1 / 𝑛 ) = ( 1 / 𝑗 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑗 + 1 ) ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
| 56 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 57 |
55 56
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = 1 ) |
| 58 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 59 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 60 |
59
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 61 |
18 2
|
eleqtrdi |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) → 𝑛 ∈ ℕ ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 64 |
63
|
nnrecred |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 66 |
53 54 57 58 60 61 65
|
telfsum |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 67 |
52 66
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 68 |
|
id |
⊢ ( 𝑛 = 𝑗 → 𝑛 = 𝑗 ) |
| 69 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) |
| 70 |
68 69
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 72 |
|
ovex |
⊢ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ V |
| 73 |
71 1 72
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 74 |
24 73
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 75 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 76 |
75 2
|
eleqtrdi |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 77 |
30
|
nnrecred |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 78 |
77
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 79 |
74 76 78
|
fsumser |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 80 |
22 67 79
|
3eqtr2rd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ) ) |
| 81 |
2 3 14 4 16 21 80
|
climsubc2 |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ ( 1 − 0 ) ) |
| 82 |
81
|
mptru |
⊢ seq 1 ( + , 𝐹 ) ⇝ ( 1 − 0 ) |
| 83 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 84 |
82 83
|
breqtri |
⊢ seq 1 ( + , 𝐹 ) ⇝ 1 |