Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
2 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
3 |
|
nnmulcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℕ ) |
4 |
2 3
|
mpdan |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℕ ) |
5 |
4
|
nncnd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
6 |
4
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ≠ 0 ) |
7 |
1 5 6
|
divrecd |
⊢ ( 𝑘 ∈ ℕ → ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) ) |
8 |
7
|
sumeq2i |
⊢ Σ 𝑘 ∈ ℕ ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
10 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
11 |
|
id |
⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) |
12 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑘 · ( 𝑘 + 1 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
16 |
|
ovex |
⊢ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ V |
17 |
14 15 16
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
18 |
17
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
19 |
4
|
nnrecred |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
21 |
20
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
22 |
15
|
trireciplem |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 |
23 |
22
|
a1i |
⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 ) |
24 |
|
climrel |
⊢ Rel ⇝ |
25 |
24
|
releldmi |
⊢ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ dom ⇝ ) |
26 |
23 25
|
syl |
⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ dom ⇝ ) |
27 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
28 |
9 10 18 21 26 27
|
isummulc2 |
⊢ ( ⊤ → ( 2 · Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) ) |
29 |
9 10 18 21 23
|
isumclim |
⊢ ( ⊤ → Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = 1 ) |
30 |
29
|
oveq2d |
⊢ ( ⊤ → ( 2 · Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) ) |
31 |
28 30
|
eqtr3d |
⊢ ( ⊤ → Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) ) |
32 |
31
|
mptru |
⊢ Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) |
33 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
34 |
8 32 33
|
3eqtri |
⊢ Σ 𝑘 ∈ ℕ ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = 2 |