| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
|
| 2 |
|
peano2nn |
|
| 3 |
|
nnmulcl |
|
| 4 |
2 3
|
mpdan |
|
| 5 |
4
|
nncnd |
|
| 6 |
4
|
nnne0d |
|
| 7 |
1 5 6
|
divrecd |
|
| 8 |
7
|
sumeq2i |
|
| 9 |
|
nnuz |
|
| 10 |
|
1zzd |
|
| 11 |
|
id |
|
| 12 |
|
oveq1 |
|
| 13 |
11 12
|
oveq12d |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
eqid |
|
| 16 |
|
ovex |
|
| 17 |
14 15 16
|
fvmpt |
|
| 18 |
17
|
adantl |
|
| 19 |
4
|
nnrecred |
|
| 20 |
19
|
recnd |
|
| 21 |
20
|
adantl |
|
| 22 |
15
|
trireciplem |
|
| 23 |
22
|
a1i |
|
| 24 |
|
climrel |
|
| 25 |
24
|
releldmi |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
2cnd |
|
| 28 |
9 10 18 21 26 27
|
isummulc2 |
|
| 29 |
9 10 18 21 23
|
isumclim |
|
| 30 |
29
|
oveq2d |
|
| 31 |
28 30
|
eqtr3d |
|
| 32 |
31
|
mptru |
|
| 33 |
|
2t1e2 |
|
| 34 |
8 32 33
|
3eqtri |
|